Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Antuvan, Chris Wilson [VerfasserIn]   i
 Masia, Lorenzo [VerfasserIn]   i
Titel:An LDA-based approach for real-time simultaneous classification of movements using surface electromyography
Verf.angabe:Chris Wilson Antuvan, student member, IEEE , and Lorenzo Masia, member, IEEE
E-Jahr:2019
Jahr:[March 2019]
Umfang:10 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 12.06.2019
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on neural systems and rehabilitation engineering
Ort Quelle:New York, NY : IEEE, 1993
Jahr Quelle:2019
Band/Heft Quelle:27(2019), 3, Seite 552-561
ISSN Quelle:1558-0210
Abstract:Myoelectric-based decoding strategies offer significant advantages in the areas of human-machine interactions because they are intuitive and require less cognitive effort from the users. However, a general drawback in using machine learning techniques for classification is that the decoder is limited to predicting only one movement at any instant and hence restricted to performing the motion in a sequential manner, whereas human motor control strategy involves simultaneous actuation of multiple degrees of freedom (DOFs) and is considered to be a natural and efficient way of performing tasks. Simultaneous decoding in the context of myoelectric-based movement control is a challenge that is being addressed recently and is increasingly popular. In this paper, we propose a novel classification strategy capable of decoding both the individual and combined movements, by collecting data from only the individual motions. Additionally, we exploit low-dimensional representation of the myoelectric signals using a supervised decomposition algorithm called linear discriminant analysis, to simplify the complexity of control and reduce computational cost. The performance of the decoding algorithm is tested in an online context for the two DOFs task comprising the hand and wrist movements. Results indicate an overall classification accuracy of 88.02% for both the individual and combined motions.
DOI:doi:10.1109/TNSRE.2018.2873839
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TNSRE.2018.2873839
 DOI: https://doi.org/10.1109/TNSRE.2018.2873839
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Calibration
 classification accuracy
 classification strategy
 combined motions
 combined movements
 Complexity theory
 decoder
 decoding
 Decoding
 decoding algorithm
 decoding strategies
 DOF task
 electromyography
 Electromyography
 hand movements
 human motor control strategy
 human-machine interactions
 individual motions
 individual movements
 learning (artificial intelligence)
 linear discriminant analysis
 low-dimensional representation
 medical signal processing
 Muscles
 myoelectric signals
 myoelectric-based movement control
 real-time myoelectric control
 real-time simultaneous classification
 Real-time systems
 signal classification
 simultaneous decoding
 simultaneous motion decoding
 supervised decomposition algorithm
 surface electromyography
 Wrist
 wrist movements
K10plus-PPN:1667287354
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68397828   QR-Code
zum Seitenanfang