Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Thakur, Chetan Singh [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
Titel:Large-scale neuromorphic spiking array processors
Titelzusatz:a quest to mimic the brain
Verf.angabe:Chetan Singh Thakur, Jamal Lottier Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan Kumar, Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jennifer Olson Hasler, Jae-sun Seo, Shimeng Yu, Yu Cao, André van Schaik and Ralph Etienne-Cummings
E-Jahr:2018
Jahr:03 December 2018
Umfang:37 S.
Fussnoten:Gesehen am 05.07.2019
Titel Quelle:Enthalten in: Frontiers in neuroscience
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2018
Band/Heft Quelle:12(2018) Artikel-Nummer 891, 37 Seiten
ISSN Quelle:1662-453X
Abstract:Neuromorphic engineering (NE) encompasses a diverse range of approaches to information processing that are inspired by neurobiological systems, and this feature distinguishes neuromorphic systems from conventional computing systems. The brain has evolved over billions of years to solve difficult engineering problems by using efficient, parallel, low-power computation. The goal of NE is to design systems capable of brain-like computation. Numerous large-scale neuromorphic projects have emerged recently. This interdisciplinary field was listed among the top 10 technology breakthroughs of 2014 by the MIT Technology Review and among the top 10 emerging technologies of 2015 by the World Economic Forum. NE has two-way goals: one, a scientific goal to understand the computational properties of biological neural systems by using models implemented in integrated circuits (ICs); second, an engineering goal to exploit the known properties of biological systems to design and implement efficient devices for engineering applications. Building hardware neural emulators can be extremely useful for simulating large-scale neural models to explain how intelligent behavior arises in the brain. The principle advantages of neuromorphic emulators are that they are highly energy efficient, parallel and distributed, and require a small silicon area. Thus, compared to conventional CPUs, these neuromorphic emulators are beneficial in many engineering applications such as for the porting of deep learning algorithms for various recognition tasks. In this review article, we describe some of the most significant neuromorphic spiking emulators, compare the different architectures and approaches used by them, illustrate their advantages and drawbacks, and highlight the capabilities that each can deliver to neural modelers. This article focuses on the discussion of large-scale emulators and is a continuation of a previous review of various neural and synapse circuits.
DOI:doi:10.3389/fnins.2018.00891
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3389/fnins.2018.00891
 Volltext: https://www.frontiersin.org/articles/10.3389/fnins.2018.00891/full
 DOI: https://doi.org/10.3389/fnins.2018.00891
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Errata Thakur, Chetan Singh: Corrigendum
Sach-SW:analog subthreshold
 brain-inspired computing
 Large-scale systems
 neuromorphic engineering
 spiking neural emulator
K10plus-PPN:1668039281
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68402210   QR-Code
zum Seitenanfang