Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schweiger, Regev [VerfasserIn]   i
 Kleber, Marcus E. [VerfasserIn]   i
 März, Winfried [VerfasserIn]   i
Titel:Fast and accurate construction of confidence intervals for heritability
Verf.angabe:Regev Schweiger, Shachar Kaufman, Reijo Laaksonen, Marcus E. Kleber, Winfried März, Eleazar Eskin, Saharon Rosset, and Eran Halperin
E-Jahr:2016
Jahr:June 2, 2016
Umfang:12 S.
Fussnoten:Gesehen am 27.06.2019
Titel Quelle:Enthalten in: The American journal of human genetics
Ort Quelle:New York, NY [u.a.] : Cell Press, 1949
Jahr Quelle:2016
Band/Heft Quelle:98(2016), 6, Seite 1181-1192
ISSN Quelle:1537-6605
Abstract:Estimation of heritability is fundamental in genetic studies. Recently, heritability estimation using linear mixed models (LMMs) has gained popularity because these estimates can be obtained from unrelated individuals collected in genome-wide association studies. Typically, heritability estimation under LMMs uses the restricted maximum likelihood (REML) approach. Existing methods for the construction of confidence intervals and estimators of SEs for REML rely on asymptotic properties. However, these assumptions are often violated because of the bounded parameter space, statistical dependencies, and limited sample size, leading to biased estimates and inflated or deflated confidence intervals. Here, we show that the estimation of confidence intervals by state-of-the-art methods is inaccurate, especially when the true heritability is relatively low or relatively high. We further show that these inaccuracies occur in datasets including thousands of individuals. Such biases are present, for example, in estimates of heritability of gene expression in the Genotype-Tissue Expression project and of lipid profiles in the Ludwigshafen Risk and Cardiovascular Health study. We also show that often the probability that the genetic component is estimated as 0 is high even when the true heritability is bounded away from 0, emphasizing the need for accurate confidence intervals. We propose a computationally efficient method, ALBI (accurate LMM-based heritability bootstrap confidence intervals), for estimating the distribution of the heritability estimator and for constructing accurate confidence intervals. Our method can be used as an add-on to existing methods for estimating heritability and variance components, such as GCTA, FaST-LMM, GEMMA, or EMMAX.
DOI:doi:10.1016/j.ajhg.2016.04.016
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ajhg.2016.04.016
 Volltext: http://www.sciencedirect.com/science/article/pii/S0002929716301434
 DOI: https://doi.org/10.1016/j.ajhg.2016.04.016
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1668069679
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68402319   QR-Code
zum Seitenanfang