Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Potschka, Andreas [VerfasserIn]  |
Titel: | Backward step control for Hilbert space problems |
Verf.angabe: | Andreas Potschka |
E-Jahr: | 2019 |
Jahr: | 11 May 2018 |
Umfang: | 30 S. |
Fussnoten: | Gesehen am 03.07.2019 |
Titel Quelle: | Enthalten in: Numerical algorithms |
Ort Quelle: | Bussum : Baltzer, 1991 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 81(2019), 1, Seite 151-180 |
ISSN Quelle: | 1572-9265 |
Abstract: | We analyze backward step control globalization for finding zeros of Gâteaux-differentiable functions that map from a Banach space to a Hilbert space. The results include global convergence to a distinctive solution characterized by propagating the initial guess by a generalized Newton flow with guaranteed bounds on the discrete nonlinear residual norm decrease and an (also numerically) easily controllable asymptotic linear residual convergence rate. The convergence theory can be exploited to construct efficient numerical methods, which we demonstrate for the case of a Krylov-Newton method and an approximation-by-discretization multilevel framework. Both approaches optimize the asymptotic linear residual convergence rate, either over the Krylov subspace or through adaptive discretization, which in turn yields practical and efficient stopping criteria and refinement strategies that balance the nonlinear residuals with the relative residuals of the linear systems. We apply these methods to the class of nonlinear elliptic boundary value problems and present numerical results for the Carrier equation and the minimum surface equation. |
DOI: | doi:10.1007/s11075-018-0539-6 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1007/s11075-018-0539-6 |
| Volltext: https://doi.org/10.1007/s11075-018-0539-6 |
| DOI: https://doi.org/10.1007/s11075-018-0539-6 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 35J66 |
| 58C15 |
| 65F08 |
| 65J15 |
| 74S05 |
| Backward step control |
| Globalization |
| Hilbert space |
| Newton-type methods |
K10plus-PPN: | 1668446146 |
Verknüpfungen: | → Zeitschrift |
Backward step control for Hilbert space problems / Potschka, Andreas [VerfasserIn]; 11 May 2018 (Online-Ressource)
68403960