Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Akçakaya, Mehmet [VerfasserIn]   i
 Weingärtner, Sebastian [VerfasserIn]   i
Titel:Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction
Titelzusatz:database-free deep learning for fast imaging
Verf.angabe:Mehmet Akçakaya, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil
Jahr:2019
Jahr des Originals:2018
Umfang:15 S.
Fussnoten:First published: 18 September 2018 ; Correction added after online publication 10 November 2018 ; Gesehen am 11.07.2019
Titel Quelle:Enthalten in: Magnetic resonance in medicine
Ort Quelle:New York, NY [u.a.] : Wiley-Liss, 1984
Jahr Quelle:2019
Band/Heft Quelle:81(2019), 1, Seite 439-453
ISSN Quelle:1522-2594
Abstract:Purpose To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
DOI:doi:10.1002/mrm.27420
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1002/mrm.27420
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27420
 DOI: https://doi.org/10.1002/mrm.27420
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:accelerated imaging
 convolutional neural networks
 deep learning
 image reconstruction
 k-space interpolation
 nonlinear estimation
 parallel imaging
K10plus-PPN:1669016595
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68407560   QR-Code
zum Seitenanfang