Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Opitz, Juri [VerfasserIn]   i
 Frank, Anette [VerfasserIn]   i
Titel:Automatic accuracy prediction for AMR parsing
Verf.angabe:Juri Opitz and Anette Frank
E-Jahr:2019
Jahr:17 Apr 2019
Umfang:12 S.
Teil:year:2019
 elocationid:1904.08301
 pages:1-12
 extent:12
Fussnoten:Gesehen am 15.07.2019
Titel Quelle:Enthalten in: De.arxiv.org
Ort Quelle:[S.l.] : Arxiv.org, 1991
Jahr Quelle:2019
Band/Heft Quelle:(2019), Artikel-ID 1904.08301, Seite 1-12
Abstract:Abstract Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manually created AMR graphs is very costly. Also, we would like to be able to detect parses of questionable quality, or preferring results of alternative systems by selecting the ones for which we can assess good quality. We propose AMR accuracy prediction as the task of predicting several metrics of correctness for an automatically generated AMR parse - in absence of the corresponding gold parse. We develop a neural end-to-end multi-output regression model and perform three case studies: firstly, we evaluate the model's capacity of predicting AMR parse accuracies and test whether it can reliably assign high scores to gold parses. Secondly, we perform parse selection based on predicted parse accuracies of candidate parses from alternative systems, with the aim of improving overall results. Finally, we predict system ranks for submissions from two AMR shared tasks on the basis of their predicted parse accuracy averages. All experiments are carried out across two different domains and show that our method is effective.
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://arxiv.org/abs/1904.08301
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Forschungsdaten: AMR parse quality prediction [Source code]
Sach-SW:Computer Science - Computation and Language
K10plus-PPN:1669121089
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68408452   QR-Code
zum Seitenanfang