Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gilbert, Alexander [VerfasserIn]   i
 Graham, I. G. [VerfasserIn]   i
 Kuo, F. Y. [VerfasserIn]   i
 Scheichl, Robert [VerfasserIn]   i
 Sloan, I. H. [VerfasserIn]   i
Titel:Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
Verf.angabe:A.D. Gilbert, I.G. Graham, F.Y. Kuo, R. Scheichl, I.H. Sloan
E-Jahr:2019
Jahr:10 May 2019
Umfang:53 S.
Fussnoten:Gesehen am 22.07.2019
Titel Quelle:Enthalten in: Numerische Mathematik
Ort Quelle:Berlin : Springer, 1959
Jahr Quelle:2019
Band/Heft Quelle:142(2019), 4, Seite 863-915
ISSN Quelle:0945-3245
Abstract:We consider the forward problem of uncertainty quantification for the generalised Dirichlet eigenvalue problem for a coercive second order partial differential operator with random coefficients, motivated by problems in structural mechanics, photonic crystals and neutron diffusion. The PDE coefficients are assumed to be uniformly bounded random fields, represented as infinite series parametrised by uniformly distributed i.i.d. random variables. The expectation of the fundamental eigenvalue of this problem is computed by (a) truncating the infinite series which define the coefficients; (b) approximating the resulting truncated problem using lowest order conforming finite elements and a sparse matrix eigenvalue solver; and (c) approximating the resulting finite (but high dimensional) integral by a randomly shifted quasi-Monte Carlo lattice rule, with specially chosen generating vector. We prove error estimates for the combined error, which depend on the truncation dimension s, the finite element mesh diameter h, and the number of quasi-Monte Carlo samples N. Under suitable regularity assumptions, our bounds are of the particular form O(h2+N−1+δ)O(h2+N−1+δ){\mathcal {O}}(h^2 + N^{-1 + \delta }), where δ>0δ>0\delta > 0 is arbitrary and the hidden constant is independent of the truncation dimension, which needs to grow as h→0h→0h\rightarrow 0 and N→∞N→∞N \rightarrow \infty . As for the analogous PDE source problem, the conditions under which our error bounds hold depend on a parameter p∈(0,1)p∈(0,1)p \in (0, 1) representing the summability of the terms in the series expansions of the coefficients. Although the eigenvalue problem is nonlinear, which means it is generally considered harder than the source problem, in almost all cases (p≠1p≠1p \ne 1) we obtain error bounds that converge at the same rate as the corresponding rate for the source problem. The proof involves a detailed study of the regularity of the fundamental eigenvalue as a function of the random parameters. As a key intermediate result in the analysis, we prove that the spectral gap (between the fundamental and the second eigenvalues) is uniformly positive over all realisations of the random problem.
DOI:doi:10.1007/s00211-019-01046-6
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1007/s00211-019-01046-6
 Volltext: https://link.springer.com/article/10.1007%2Fs00211-019-01046-6
 DOI: https://doi.org/10.1007/s00211-019-01046-6
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:65D30
 65N25
 65N30
K10plus-PPN:1669537684
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68410768   QR-Code
zum Seitenanfang