Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Brandenburg, Sören [VerfasserIn]   i
 Schmidt, Constanze [VerfasserIn]   i
 Wiedmann, Felix Tobias [VerfasserIn]   i
Titel:Axial tubule junctions activate atrial Ca2+ release across species
Verf.angabe:Sören Brandenburg, Jan Pawlowitz, Funsho E. Fakuade, Daniel Kownatzki-Danger, Tobias Kohl, Gyuzel Y. Mitronova, Marina Scardigli, Jakob Neef, Constanze Schmidt, Felix Wiedmann, Francesco S. Pavone, Leonardo Sacconi, Ingo Kutschka, Samuel Sossalla, Tobias Moser, Niels Voigt, and Stephan E. Lehnart
E-Jahr:2018
Jahr:08 October 2018
Umfang:21 S.
Fussnoten:Im Titel ist "2+" hochgestellt ; Gesehen am 30.07.2019
Titel Quelle:Enthalten in: Frontiers in physiology
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2018
Band/Heft Quelle:9(2018) Artikel-Nummer 1227, 21 Seiten
ISSN Quelle:1664-042X
Abstract:Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist throughout species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol marker and immunofluorescence imaging of Ca2+ channel clusters in fixed tissue sections from human and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed large L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs for rapid signal transduction. While the density of the L-type Ca2+ current was similar in human and mouse AMs, the amplitude and kinetics of the Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation through transverse tubules (TTs) from the surface membrane. Hence, sparse transverse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusions: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial “super-hub” Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and their therapeutic targeting.
DOI:doi:10.3389/fphys.2018.01227
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3389/fphys.2018.01227
 Volltext: https://www.frontiersin.org/articles/10.3389/fphys.2018.01227/full
 DOI: https://doi.org/10.3389/fphys.2018.01227
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:atria
 atrial myocyte
 Axial Tubule
 Calcium
 Heart
 ryanodine Receptor
K10plus-PPN:1670230031
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68413806   QR-Code
zum Seitenanfang