Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Maier, Joscha [VerfasserIn]   i
 Eulig, Elias [VerfasserIn]   i
 Vöth, Tim [VerfasserIn]   i
 Sawall, Stefan [VerfasserIn]   i
 Kachelrieß, Marc [VerfasserIn]   i
Titel:Real-time scatter estimation for medical CT using the deep scatter estimation
Titelzusatz:Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation
Verf.angabe:Joscha Maier, Elias Eulig, Tim Vöth, Michael Knaup, Jan Kuntz, Stefan Sawall, Marc Kachelrieß
Jahr:2019
Jahr des Originals:2018
Umfang:12 S.
Fussnoten:published 26 November 2018 ; Gesehen am 31.07.2019
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2019
Band/Heft Quelle:46(2019), 1, Seite 238-249
ISSN Quelle:2473-4209
 1522-8541
Abstract:Purpose X-ray scattering leads to CT images with a reduced contrast, inaccurate CT values as well as streak and cupping artifacts. Therefore, scatter correction is crucial to maintain the diagnostic value of CT and CBCT examinations. However, existing approaches are not able to combine both high accuracy and high computational performance. Therefore, we propose the deep scatter estimation (DSE): a deep convolutional neural network to derive highly accurate scatter estimates in real time. Methods Gold standard scatter estimation approaches rely on dedicated Monte Carlo (MC) photon transport codes. However, being computationally expensive, MC methods cannot be used routinely. To enable real-time scatter correction with similar accuracy, DSE uses a deep convolutional neural network that is trained to predict MC scatter estimates based on the acquired projection data. Here, the potential of DSE is demonstrated using simulations of CBCT head, thorax, and abdomen scans as well as measurements at an experimental table-top CBCT. Two conventional computationally efficient scatter estimation approaches were implemented as reference: a kernel-based scatter estimation (KSE) and the hybrid scatter estimation (HSE). Results The simulation study demonstrates that DSE generalizes well to varying tube voltages, varying noise levels as well as varying anatomical regions as long as they are appropriately represented within the training data. In any case the deviation of the scatter estimates from the ground truth MC scatter distribution is less than 1.8% while it is between 6.2% and 293.3% for HSE and between 11.2% and 20.5% for KSE. To evaluate the performance for real data, measurements of an anthropomorphic head phantom were performed. Errors were quantified by a comparison to a slit scan reconstruction. Here, the deviation is 278 HU (no correction), 123 HU (KSE), 65 HU (HSE), and 6 HU (DSE), respectively. Conclusions The DSE clearly outperforms conventional scatter estimation approaches in terms of accuracy. DSE is nearly as accurate as Monte Carlo simulations but is superior in terms of speed (≈10 ms/projection) by orders of magnitude.
DOI:doi:10.1002/mp.13274
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1002/mp.13274
 Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13274
 DOI: https://doi.org/10.1002/mp.13274
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1670315630
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68414404   QR-Code
zum Seitenanfang