| Online-Ressource |
Verfasst von: | Kunisch, Elke [VerfasserIn]  |
| Knauf, Anne-Kathrin [VerfasserIn]  |
| Hesse, Eliane [VerfasserIn]  |
| Bothe, Friederike [VerfasserIn]  |
| Diederichs, Solvig [VerfasserIn]  |
| Richter, Wiltrud [VerfasserIn]  |
Titel: | StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer |
Verf.angabe: | Elke Kunisch, Anne-Kathrin Knauf, Eliane Hesse, Uwe Freudenberg, Carsten Werner, Friederike Bothe, Solvig Diederichs, and Wiltrud Richter |
Jahr: | 2019 |
Jahr des Originals: | 2018 |
Fussnoten: | Published 30 October 2018 ; Gesehen am 31.07.2019 |
Titel Quelle: | Enthalten in: Biofabrication |
Ort Quelle: | Bristol : IOP Publ., 2009 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 11(2019,1) Artikel-Nummer 015001, ? Seiten |
ISSN Quelle: | 1758-5090 |
Abstract: | Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication. |
DOI: | doi:10.1088/1758-5090/aae75a |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1088/1758-5090/aae75a |
| Volltext: https://iopscience.iop.org/article/10.1088/1758-5090/aae75a |
| DOI: https://doi.org/10.1088/1758-5090/aae75a |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1670325660 |
Verknüpfungen: | → Zeitschrift |
StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer / Kunisch, Elke [VerfasserIn]; 2019 (Online-Ressource)