Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Sokolowski, Thomas [VerfasserIn]   i
 Becker, Nils B. [VerfasserIn]   i
Titel:eGFRD in all dimensions
Verf.angabe:Thomas R. Sokolowski, Joris Paijmans, Laurens Bossen, Thomas Miedema, Martijn Wehrens, Nils B. Becker, Kazunari Kaizu, Koichi Takahashi, Marileen Dogterom, and Pieter Rein ten Wolde
E-Jahr:2019
Jahr:07 February 2019
Umfang:24 S.
Fussnoten:Gesehen am 15.08.2019
Titel Quelle:Enthalten in: The journal of chemical physics
Ort Quelle:Melville, NY : American Institute of Physics, 1933
Jahr Quelle:2019
Band/Heft Quelle:150(2019) Artikel-Nummer 054108, 24 Seiten
ISSN Quelle:1089-7690
Abstract:Biochemical reactions often occur at low copy numbers but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. While particle-based models guarantee the level of detail necessary to accurately describe the microscopic dynamics at very low copy numbers, the algorithms used to simulate them typically imply trade-offs between computational efficiency and biochemical accuracy. eGFRD (enhanced Green’s Function Reaction Dynamics) is an exact algorithm that evades such trade-offs by partitioning the N-particle system into M ≤ N analytically tractable one- and two-particle systems; the analytical solutions (Green’s functions) then are used to implement an event-driven particle-based scheme that allows particles to make large jumps in time and space while retaining access to their state variables at arbitrary simulation times. Here we present “eGFRD2,” a new eGFRD version that implements the principle of eGFRD in all dimensions, thus enabling efficient particle-based simulation of biochemical reaction-diffusion processes in the 3D cytoplasm, on 2D planes representing membranes, and on 1D elongated cylinders representative of, e.g., cytoskeletal tracks or DNA; in 1D, it also incorporates convective motion used to model active transport. We find that, for low particle densities, eGFRD2 is up to 6 orders of magnitude faster than conventional Brownian dynamics. We exemplify the capabilities of eGFRD2 by simulating an idealized model of Pom1 gradient formation, which involves 3D diffusion, active transport on microtubules, and autophosphorylation on the membrane, confirming recent experimental and theoretical results on this system to hold under genuinely stochastic conditions.
DOI:doi:10.1063/1.5064867
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1063/1.5064867
 Volltext: https://aip.scitation.org/doi/10.1063/1.5064867
 DOI: https://doi.org/10.1063/1.5064867
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1671457412
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68421128   QR-Code
zum Seitenanfang