Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Simon, Dirk [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
 Thieke, Christian [VerfasserIn]   i
 Klein, Jan [VerfasserIn]   i
 Parzer, Peter [VerfasserIn]   i
 Weber, Marc-André [VerfasserIn]   i
 Stieltjes, Bram [VerfasserIn]   i
Titel:Diffusion-weighted imaging-based probabilistic segmentation of high- and low-proliferative areas in high-grade gliomas
Verf.angabe:Dirk Simon, Klaus H. Fritzsche, Christian Thieke, Jan Klein, Peter Parzer, Marc-André Weber, Bram Stieltjes
E-Jahr:2012
Jahr:2012 Apr 5
Umfang:11 S.
Fussnoten:Gesehen am 19.08.2019
Titel Quelle:Enthalten in: Cancer imaging
Ort Quelle:London, 2000
Jahr Quelle:2012
Band/Heft Quelle:12(2012), 1, Seite 89-99
ISSN Quelle:1470-7330
Abstract:The apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) correlates inversely with tumor proliferation rates. High-grade gliomas are typically heterogeneous and the delineation of areas of high and low proliferation is impeded by partial volume effects and blurred borders. Commonly used manual delineation is further impeded by potential overlap with cerebrospinal fluid and necrosis. Here we present an algorithm to reproducibly delineate and probabilistically quantify the ADC in areas of high and low proliferation in heterogeneous gliomas, resulting in a reproducible quantification in regions of tissue inhomogeneity. We used an expectation maximization (EM) clustering algorithm, applied on a Gaussian mixture model, consisting of pure superpositions of Gaussian distributions. Soundness and reproducibility of this approach were evaluated in 10 patients with glioma. High- and low-proliferating areas found using the clustering correspond well with conservative regions of interest drawn using all available imaging data. Systematic placement of model initialization seeds shows good reproducibility of the method. Moreover, we illustrate an automatic initialization approach that completely removes user-induced variability. In conclusion, we present a rapid, reproducible and automatic method to separate and quantify heterogeneous regions in gliomas.
DOI:doi:10.1102/1470-7330.2012.0010
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1102/1470-7330.2012.0010
 Volltext: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335334/
 DOI: https://doi.org/10.1102/1470-7330.2012.0010
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1671602145
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68421968   QR-Code
zum Seitenanfang