Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schwarz, Emanuel [VerfasserIn]   i
 Kirsch, Peter [VerfasserIn]   i
 Tost, Heike [VerfasserIn]   i
 Witt, Stephanie [VerfasserIn]   i
 Zink, Mathias [VerfasserIn]   i
 Meyer-Lindenberg, Andreas [VerfasserIn]   i
Titel:Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder
Verf.angabe:Emanuel Schwarz, Nhat Trung Doan, Giulio Pergola, Lars T. Westlye, Tobias Kaufmann, Thomas Wolfers, Ralph Brecheisen, Tiziana Quarto, Alex J. Ing, Pasquale Di Carlo, Tiril P. Gurholt, Robbert L. Harms, Quentin Noirhomme, Torgeir Moberget, Ingrid Agartz, Ole A. Andreassen, Marcella Bellani, Alessandro Bertolino, Giuseppe Blasi, Paolo Brambilla, Jan K. Buitelaar, Simon Cervenka, Lena Flyckt, Sophia Frangou, Barbara Franke, Jeremy Hall, Dirk J. Heslenfeld, Peter Kirsch, Andrew M. McIntosh, Markus M. Nöthen, Andreas Papassotiropoulos, Dominique J.-F. de Quervain, Marcella Rietschel, Gunter Schumann, Heike Tost, Stephanie H. Witt, Mathias Zink and Andreas Meyer-Lindenberg, The IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium
E-Jahr:2019
Jahr:17 January 2019
Umfang:13 S.
Fussnoten:Gesehen am 21.08.2019
Titel Quelle:Enthalten in: Translational Psychiatry
Ort Quelle:London : Nature Publishing Group, 2011
Jahr Quelle:2019
Band/Heft Quelle:9(2019), Artikel-ID 12, Seite 1-13
ISSN Quelle:2158-3188
Abstract:Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.
DOI:doi:10.1038/s41398-018-0225-4
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1038/s41398-018-0225-4
 DOI: https://doi.org/10.1038/s41398-018-0225-4
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Adolescent
 Adult
 Attention Deficit Disorder with Hyperactivity
 Bipolar Disorder
 Case-Control Studies
 Female
 Gray Matter
 Humans
 Machine Learning
 Magnetic Resonance Imaging
 Male
 Middle Aged
 Schizophrenia
 Young Adult
K10plus-PPN:1671766792
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68422802   QR-Code
zum Seitenanfang