Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bastian, Peter [VerfasserIn]   i
 Müller, Eike Hermann [VerfasserIn]   i
 Müthing, Steffen [VerfasserIn]   i
 Piatkowski, Stephan-Marian [VerfasserIn]   i
Titel:Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations
Verf.angabe:Peter Bastian, Eike Hermann Müller, Steffen Müthing, Marian Piatkowski
E-Jahr:2019
Jahr:4 June 2019
Umfang:23 S.
Fussnoten:Gesehen am 27.08.2019
Titel Quelle:Enthalten in: Journal of computational physics
Ort Quelle:Amsterdam : Elsevier, 1961
Jahr Quelle:2019
Band/Heft Quelle:394(2019), Seite 417-439
ISSN Quelle:1090-2716
Abstract:Efficient and suitably preconditioned iterative solvers for elliptic partial differential equations (PDEs) of the convection-diffusion type are used in all fields of science and engineering, including for example computational fluid dynamics, nuclear reactor simulations and combustion models. To achieve optimal performance, solvers have to exhibit high arithmetic intensity and need to exploit every form of parallelism available in modern manycore CPUs. This includes both distributed- or shared memory parallelisation between processors and vectorisation on individual cores. The computationally most expensive components of the solver are the repeatedapplications of the linear operator and the preconditioner. For discretisations based on higher-order Discontinuous Galerkin methods, sum-factorisation results in a dramatic reduction of the computational complexity of the operator application while, at the same time, the matrix-free implementation can run at a significant fraction of the theoretical peak floating point performance. Multigrid methods for high order methods often rely on block-smoothers to reduce high-frequency error components within one grid cell. Traditionally, this requires the assembly and expensive dense matrix solve in each grid cell, which counteracts any improvements achieved in the fast matrix-free operator application. To overcome this issue, we present a new matrix-free implementation of block-smoothers. Inverting the block matrices iteratively avoids storage and factorisation of the matrix and makes it is possible to harness the full power of the CPU. We implemented a hybrid multigrid algorithm with matrix-free block-smoothers in the high order Discontinuous Galerkin (DG) space combined with a low order coarse grid correction using algebraic multigrid where only low order components are explicitly assembled. The effectiveness of this approach is demonstrated by solving a set of representative elliptic PDEs of increasing complexity, including a convection dominated problem and the stationary SPE10 benchmark.
DOI:doi:10.1016/j.jcp.2019.06.001
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.jcp.2019.06.001
 Volltext: http://www.sciencedirect.com/science/article/pii/S0021999119303973
 DOI: https://doi.org/10.1016/j.jcp.2019.06.001
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Discontinuous Galerkin
 DUNE
 Elliptic PDE
 Matrix-free methods
 Multigrid
 Preconditioners
K10plus-PPN:1672251664
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68424414   QR-Code
zum Seitenanfang