Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Kotnis, Bhushan [VerfasserIn]   i
Titel:Negative sampling for learning knowledge graph embeddings
Verf.angabe:Bhushan Kotnis
Verlagsort:Heidelberg
Verlag:Universität
E-Jahr:2019
Jahr:2019-08-19
Umfang:1 Online-Ressource (1 File)
Fussnoten:Kind of data: Program source code ; Gesehen am 02.09.2019
Abstract:Reimplementation of four KG factorization methods and six negative sampling methods. Abstract: Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This has inspired methods for the joint embedding of entities and relations in continuous low-dimensional vector spaces, that can be used to induce new edges in the graph, i.e., link prediction in knowledge graphs. Learning these representations relies on contrasting positive instances with negative ones. Knowledge graphs include only positive relation instances, leaving the door open for a variety of methods for selecting negative examples. In this paper we present an empirical study on the impact of negative sampling on the learned embeddings, assessed through the task of link prediction. We use state-of-the-art knowledge graph embeddings -- \rescal , TransE, DistMult and ComplEX -- and evaluate on benchmark datasets -- FB15k and WN18. We compare well known methods for negative sampling and additionally propose embedding based sampling methods. We note a marked difference in the impact of these sampling methods on the two datasets, with the "traditional" corrupting positives method leading to best results on WN18, while embedding based methods benefiting the task on FB15k.
DOI:doi:10.11588/data/YYULL2
URL:Kostenfrei: Volltext ; Verlag: https://doi.org/10.11588/data/YYULL2
 Kostenfrei: Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/YYULL2
 DOI: https://doi.org/10.11588/data/YYULL2
Datenträger:Online-Ressource
Dokumenttyp:Forschungsdaten
 Datenbank
Sprache:eng
Bibliogr. Hinweis:Forschungsdaten zu Kotnis, Bhushan: Analysis of the impact of negative sampling on link prediction in knowledge graphs
K10plus-PPN:1675680590
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68425928   QR-Code
zum Seitenanfang