Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wyder, Stefan [VerfasserIn]   i
 Raissig, Michael Thomas [VerfasserIn]   i
 Grossniklaus, Ueli [VerfasserIn]   i
Titel:Consistent reanalysis of genome-wide imprinting studies in plants using generalized linear models increases concordance across datasets
Verf.angabe:Stefan Wyder, Michael T. Raissig & Ueli Grossniklaus
E-Jahr:2019
Jahr:04 February 2019
Umfang:13 S.
Fussnoten:Gesehen am 12.09.2019
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Macmillan Publishers Limited, part of Springer Nature, 2011
Jahr Quelle:2019
Band/Heft Quelle:9(2019) Artikel-Nummer 1320, 13 Seiten
ISSN Quelle:2045-2322
Abstract:Genomic imprinting leads to different expression levels of maternally and paternally derived alleles. Over the last years, major progress has been made in identifying novel imprinted candidate genes in plants, owing to affordable next-generation sequencing technologies. However, reports on sequencing the transcriptome of hybrid F1 seed tissues strongly disagree about how many and which genes are imprinted. This raises questions about the relative impact of biological, environmental, technical, and analytic differences or biases. Here, we adopt a statistical approach, frequently used in RNA-seq data analysis, which properly models count overdispersion and considers replicate information of reciprocal crosses. We show that our statistical pipeline outperforms other methods in identifying imprinted genes in simulated and real data. Accordingly, reanalysis of genome-wide imprinting studies in Arabidopsis and maize shows that, at least for Arabidopsis, an increased agreement across datasets could be observed. For maize, however, consistent reanalysis did not yield a larger overlap between the datasets. This suggests that the discrepancy across publications might be partially due to different analysis pipelines but that technical, biological, and environmental factors underlie much of the discrepancy between datasets. Finally, we show that the set of genes that can be characterized regarding allelic bias by all studies with minimal confidence is small (~8,000/27,416 genes for Arabidopsis and ~12,000/39,469 for maize). In conclusion, we propose to use biologically replicated reciprocal crosses, high sequence coverage, and a generalized linear model approach to identify differentially expressed alleles in developing seeds.
DOI:doi:10.1038/s41598-018-36768-4
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1038/s41598-018-36768-4
 Volltext: https://www.nature.com/articles/s41598-018-36768-4
 DOI: https://doi.org/10.1038/s41598-018-36768-4
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1676788840
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68429648   QR-Code
zum Seitenanfang