Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hekler, Achim [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Brinker, Titus Josef [VerfasserIn]   i
Titel:Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images
Verf.angabe:Achim Hekler, Jochen S. Utikal, Alexander H. Enk, Wiebke Solass, Max Schmitt, Joachim Klode, Dirk Schadendorf, Wiebke Sondermann, Cindy Franklin, Felix Bestvater, Michael J. Flaig, Dieter Krahl, Christof von Kalle, Stefan Fröhling, Titus J. Brinker
E-Jahr:2019
Jahr:18 July 2019
Umfang:6 S.
Fussnoten:Gesehen am 23.09.2019
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2019
Band/Heft Quelle:118(2019), Seite 91-96
ISSN Quelle:1879-0852
Abstract:Background - The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-26% of discordance for classifying a benign nevus versus malignant melanoma. A recent study indicated the potential of deep learning to lower these discordances. However, the performance of deep learning in classifying histopathologic melanoma images was never compared directly to human experts. The aim of this study is to perform such a first direct comparison. - Methods - A total of 695 lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi/345 melanoma). Only the haematoxylin & eosin (H&E) slides of these lesions were digitalised via a slide scanner and then randomly cropped. A total of 595 of the resulting images were used to train a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison to 11 histopathologists. Three combined McNemar tests comparing the results of the CNNs test runs in terms of sensitivity, specificity and accuracy were predefined to test for significance (p < 0.05). - Findings - The CNN achieved a mean sensitivity/specificity/accuracy of 76%/60%/68% over 11 test runs. In comparison, the 11 pathologists achieved a mean sensitivity/specificity/accuracy of 51.8%/66.5%/59.2%. Thus, the CNN was significantly (p = 0.016) superior in classifying the cropped images. - Interpretation - With limited image information available, a CNN was able to outperform 11 histopathologists in the classification of histopathological melanoma images and thus shows promise to assist human melanoma diagnoses.
DOI:doi:10.1016/j.ejca.2019.06.012
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2019.06.012
 Volltext: http://www.sciencedirect.com/science/article/pii/S0959804919303806
 DOI: https://doi.org/10.1016/j.ejca.2019.06.012
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Deep learning
 Histopathology
 Melanoma
 Pathology
K10plus-PPN:1677529520
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68432346   QR-Code
zum Seitenanfang