Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hellmers, Sandra [VerfasserIn]   i
 Izadpanah, Babak [VerfasserIn]   i
 Elgert, Lena [VerfasserIn]   i
 Diekmann, Rebecca [VerfasserIn]   i
 Bauer, Jürgen M. [VerfasserIn]   i
 Hein, Andreas [VerfasserIn]   i
 Fudickar, Sebastian [VerfasserIn]   i
Titel:Towards an automated unsupervised mobility assessment for older people based on inertial TUG measurements
Verf.angabe:Sandra Hellmers, Babak Izadpanah, Lena Dasenbrock, Rebecca Diekmann, Jürgen M. Bauer, Andreas Hein and Sebastian Fudickar
E-Jahr:2018
Jahr:2 October 2018
Umfang:17 S.
Teil:volume:18
 year:2018
 number:10
 extent:17
Fussnoten:Published: 2 October 2018 ; Gesehen am 24.09.2019
Titel Quelle:Enthalten in: Sensors
Ort Quelle:Basel : MDPI, 2001
Jahr Quelle:2018
Band/Heft Quelle:Bd. 18 (2018), 10, Art.-Nr. 3310, insges. 17 S.
ISSN Quelle:1424-8220
Abstract:One of the most common assessments for the mobility of older people is the Timed Up and Go test (TUG). Due to its sensitivity regarding the indication of Parkinson’s disease (PD) or increased fall risk in elderly people, this assessment test becomes increasingly relevant, should be automated and should become applicable for unsupervised self-assessments to enable regular examinations of the functional status. With Inertial Measurement Units (IMU) being well suited for automated analyses, we evaluate an IMU-based analysis-system, which automatically detects the TUG execution via machine learning and calculates the test duration. as well as the duration of its single components. The complete TUG was classified with an accuracy of 96% via a rule-based model in a study with 157 participants aged over 70 years. A comparison between the TUG durations determined by IMU and criterion standard measurements (stopwatch and automated/ambient TUG (aTUG) system) showed significant correlations of 0.97 and 0.99, respectively. The classification of the instrumented TUG (iTUG)-components achieved accuracies over 96%, as well. Additionally, the system’s suitability for self-assessments was investigated within a semi-unsupervised situation where a similar movement sequence to the TUG was executed. This preliminary analysis confirmed that the self-selected speed correlates moderately with the speed in the test situation, but differed significantly from each other.
DOI:doi:10.3390/s18103310
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext ; Verlag ; Resolving-System: https://doi.org/10.3390/s18103310
 Volltext ; Verlag: https://doi.org/10.3390/s18103310
 Volltext: https://www.mdpi.com/1424-8220/18/10/3310
 DOI: https://doi.org/10.3390/s18103310
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Domestic environment
 Frailty
 Functional decline
 Geriatric assessment
 IMU
 Machine learning
 Self-assessment
 Semi-unsupervised
 TUG
 Wearable sensors
K10plus-PPN:1677341904
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68432562   QR-Code
zum Seitenanfang