Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vogt, Manfred [VerfasserIn]   i
 Hopp, Jens [VerfasserIn]   i
 Gail, Hans-Peter [VerfasserIn]   i
 Trieloff, Mario [VerfasserIn]   i
Titel:Acquisition of terrestrial neon during accretion
Titelzusatz:a mixture of solar wind and planetary components
Verf.angabe:Manfred Vogt, Jens Hopp, Hans-Peter Gail, Ulrich Ott, Mario Trieloff
E-Jahr:2019
Jahr:21 August 2019
Umfang:24 S.
Fussnoten:Gesehen am 10.10.2019
Titel Quelle:Enthalten in: Geochimica et cosmochimica acta
Ort Quelle:New York, NY [u.a.] : Elsevier, 1950
Jahr Quelle:2019
Band/Heft Quelle:264(2019), Seite 141-164
ISSN Quelle:1872-9533
Abstract:Earth’s mantle contains Ne resembling the solar wind implanted Ne-B component in meteorites (20Ne/22NeNe-B: ∼12.7). The atmosphere, instead, displays a “planetary” signature (20Ne/22NeAtm: 9.80). We explore the parameter space of a model that explains these isotopic variations by the contribution of late accreting volatile-rich material (e.g., carbonaceous chondrite-like) to Earth́s atmosphere, while Earth́s mantle incorporated solar wind type Ne that was previously implanted into part of the accreting material. Analyses of the present-day terrestrial influx mass distributions show two major peaks at large bodies >1km and small ∼200µm dust particles. The latter dominate the influx of the surface implanted Ne-B component. Ne measurements of small particles define a maximum surface flux (neon reaching the terrestrial surface) peaking at 9µm, while larger micrometeorites experience ablation losses and isotopic fractionation upon atmospheric entry. Using these data, we reconstruct the unfractionated Ne-B upper atmosphere flux which peaks at ∼75µm. As the extraterrestrial influx mass distribution between larger bodies and debris dust is governed by equilibrium due to collisions and fragmentation, it is an approximation of the early solar system (after nebula dissipation), where the mass distribution was similar but total fluxes were higher. Contributions of Ne-B by small dust and planetary Ne-A from larger bodies strongly depend on formation region. Originating around the 1 AU region, early accretionary fluxes were dominated by Ne-B as large bodies likely contained only negligible amounts of Ne-A. Ne-B will be ultimately delivered to the earliest protoatmosphere by impact or thermal degassing and a significant fraction of Ne-B can enter the Earth́s interior via dissolution into a magma ocean before the Moon-forming impact. After the Moon-forming impact, Ne-B reenters the atmosphere by mantle degassing and a later meteoritic contribution modified the atmospheric composition. This meteoritic component was likely dominated by Ne-A, as the only remaining planetesimals at that time were in the asteroid belt or beyond, leading to preferential contributions of carbonaceous chondrite-type material. In our model we take into account possible variations of several parameters, e.g. the isotopic composition of the late accretion (i.e., 20Ne/22Ne: 5.2-9.2). For example, a 20Ne/22Ne ratio of 8.2 (Ne-A composition) would imply ∼2% mass increase of Earth from CC-type material after the Moon-forming impact, and would require that todaýs atmosphere (20Ne/22Ne=9.8) formed by roughly equal mixing of late accreted Ne-A and mantle Ne-B. The amount of Ne-B added from the mantle implies a certain degree of mantle degassing (in this case 82-96%, depending on todaýs mantle neon inventory) and constrains two further parameters: the fraction of solar wind irradiated material delivered to Earth before the Moon-forming impact and the magma ocean depth. The latter determines the fraction of Ne-B dissolved from a protoatmosphere. For example, magma ocean depths between 500 and 2900km allow 4-15% dissolution of the protoatmospheric Ne-B inventory, and would require only less than 10% of irradiated accreting material. Only unreasonable magma ocean depths lower than 200km require several ten percent of irradiated material.
DOI:doi:10.1016/j.gca.2019.08.016
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.gca.2019.08.016
 Verlag: http://www.sciencedirect.com/science/article/pii/S0016703719305149
 DOI: https://doi.org/10.1016/j.gca.2019.08.016
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Planetary neon
 Solar neon
 Solar wind irradiation
 Terrestrial accretion
 Terrestrial neon
 Volatiles
K10plus-PPN:1678639397
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68437688   QR-Code
zum Seitenanfang