Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Herfort, Benjamin [VerfasserIn]   i
 Li, Hao [VerfasserIn]   i
 Fendrich, Sascha [VerfasserIn]   i
 Lautenbach, Sven [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:Mapping human settlements with higher accuracy and less volunteer efforts by combining crowdsourcing and deep learning
Verf.angabe:Benjamin Herfort, Hao Li, Sascha Fendrich, Sven Lautenbach and Alexander Zipf
E-Jahr:2019
Jahr:31 July 2019
Umfang:21 S.
Fussnoten:Gesehen am 22.10.2019
Titel Quelle:Enthalten in: Remote sensing
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2019
Band/Heft Quelle:11(2019,15) Artikel-Nummer 1799, 21 Seiten
ISSN Quelle:2072-4292
Abstract:Reliable techniques to generate accurate data sets of human built-up areas at national, regional, and global scales are a key factor to monitor the implementation progress of the Sustainable Development Goals as defined by the United Nations. However, the scarce availability of accurate and up-to-date human settlement data remains a major challenge, e.g., for humanitarian organizations. In this paper, we investigated the complementary value of crowdsourcing and deep learning to fill the data gaps of existing earth observation-based (EO) products. To this end, we propose a novel workflow to combine deep learning (DeepVGI) and crowdsourcing (MapSwipe). Our strategy for allocating classification tasks to deep learning or crowdsourcing is based on confidence of the derived binary classification. We conducted case studies in three different sites located in Guatemala, Laos, and Malawi to evaluate the proposed workflow. Our study reveals that crowdsourcing and deep learning outperform existing EO-based approaches and products such as the Global Urban Footprint. Compared to a crowdsourcing-only approach, the combination increased the quality (measured by Matthew’s correlation coefficient) of the generated human settlement maps by 3 to 5 percentage points. At the same time, it reduced the volunteer efforts needed by at least 80 percentage points for all study sites. The study suggests that for the efficient creation of human settlement maps, we should rely on human skills when needed and rely on automated approaches when possible.
DOI:doi:10.3390/rs11151799
URL:Kostenfrei: Volltext ; Verlag: https://doi.org/10.3390/rs11151799
 Kostenfrei: Volltext: https://www.mdpi.com/2072-4292/11/15/1799
 DOI: https://doi.org/10.3390/rs11151799
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:building detection
 crowdsourcing
 deep learning
 human settlements
 humanitarian mapping
 volunteered geographic information
K10plus-PPN:1679342339
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68443717   QR-Code
zum Seitenanfang