Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hekler, Achim [VerfasserIn]   i
 Utikal, Jochen [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Berking, Carola [VerfasserIn]   i
 Klode, Joachim [VerfasserIn]   i
 Schadendorf, Dirk [VerfasserIn]   i
 Jansen, Philipp [VerfasserIn]   i
 Franklin, Cindy [VerfasserIn]   i
 Holland-Letz, Tim [VerfasserIn]   i
 Krahl, Dieter [VerfasserIn]   i
 Kalle, Christof von [VerfasserIn]   i
 Fröhling, Stefan [VerfasserIn]   i
 Brinker, Titus Josef [VerfasserIn]   i
Titel:Pathologist-level classification of histopathological melanoma images with deep neural networks
Verf.angabe:Achim Hekler, Jochen Sven Utikal, Alexander H. Enk, Carola Berking, Joachim Klode, Dirk Schadendorf, Philipp Jansen, Cindy Franklin, Tim Holland-Letz, Dieter Krahl, Christof von Kalle, Stefan Fröhling, Titus Josef Brinker
E-Jahr:2019
Jahr:July 2019
Umfang:15 S.
Fussnoten:Gesehen am 22.10.2019
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2019
Band/Heft Quelle:115(2019), Seite 79-83
ISSN Quelle:1879-0852
Abstract:Background - The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports 25-26% of discordance for classifying a benign nevus versus malignant melanoma. Deep learning was successfully implemented to enhance the precision of lung and breast cancer diagnoses. The aim of this study is to illustrate the potential of deep learning to assist human assessment for a histopathologic melanoma diagnosis. - Methods - Six hundred ninety-five lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi and 345 melanomas). Only the haematoxylin and eosin stained (H&E) slides of these lesions were digitalised using a slide scanner and then randomly cropped. Five hundred ninety-five of the resulting images were used for the training of a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison with the original class labels. - Findings - The total discordance with the histopathologist was 18% for melanoma (95% confidence interval [CI]: 7.4-28.6%), 20% for nevi (95% CI: 8.9-31.1%) and 19% for the full set of images (95% CI: 11.3-26.7%). - Interpretation - Even in the worst case, the discordance of the CNN was about the same compared with the discordance between human pathologists as reported in the literature. Despite the vastly reduced amount of data, time necessary for diagnosis and cost compared with the pathologist, our CNN archived on-par performance. Conclusively, CNNs indicate to be a valuable tool to assist human melanoma diagnoses.
DOI:doi:10.1016/j.ejca.2019.04.021
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2019.04.021
 Verlag: http://www.sciencedirect.com/science/article/pii/S0959804919302758
 DOI: https://doi.org/10.1016/j.ejca.2019.04.021
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Deep learning
 Histopathology
 Melanoma
 Pathology
K10plus-PPN:1679361597
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68443788   QR-Code
zum Seitenanfang