Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mocnik, Franz-Benjamin [VerfasserIn]   i
 Ludwig, Christina [VerfasserIn]   i
 Grinberger, Asher Yair [VerfasserIn]   i
 Jacobs, Clemens [VerfasserIn]   i
 Klonner, Carolin [VerfasserIn]   i
 Raifer, Martin [VerfasserIn]   i
Titel:Shared data sources in the geographical domain
Titelzusatz:a classification schema and corresponding visualization techniques
Verf.angabe:Franz-Benjamin Mocnik, Christina Ludwig, A. Yair Grinberger, Clemens Jacobs, Carolin Klonner and Martin Raifer
E-Jahr:2019
Jahr:27 May 2019
Umfang:26 S.
Teil:volume:8
 year:2019
 number:5
 extent:26
Fussnoten:Gesehen am 23.10.2019
Titel Quelle:Enthalten in: International Society for Photogrammetry and Remote SensingISPRS International Journal of Geo-Information
Ort Quelle:Basel : MDPI, 2012
Jahr Quelle:2019
Band/Heft Quelle:8(2019,5) Artikel-Nummer 242, 26 Seiten
ISSN Quelle:2220-9964
Abstract:People share data in different ways. Many of them contribute on a voluntary basis, while others are unaware of their contribution. They have differing intentions, collaborate in different ways, and they contribute data about differing aspects. Shared Data Sources have been explored individually in the literature, in particular OpenStreetMap and Twitter, and some types of Shared Data Sources have widely been studied, such as Volunteered Geographic Information (VGI), Ambient Geographic Information (AGI), and Public Participation Geographic Information Systems (PPGIS). A thorough and systematic discussion of Shared Data Sources in their entirety is, however, still missing. For the purpose of establishing such a discussion, we introduce in this article a schema consisting of a number of dimensions for characterizing socially produced, maintained, and used ‘Shared Data Sources,’ as well as corresponding visualization techniques. Both the schema and the visualization techniques allow for a common characterization in order to set individual data sources into context and to identify clusters of Shared Data Sources with common characteristics. Among others, this makes possible choosing suitable Shared Data Sources for a given task and gaining an understanding of how to interpret them by drawing parallels between several Shared Data Sources.
DOI:doi:10.3390/ijgi8050242
URL:Volltext ; Verlag ; Resolving-System: https://doi.org/10.3390/ijgi8050242
 Volltext: https://www.mdpi.com/2220-9964/8/5/242
 DOI: https://doi.org/10.3390/ijgi8050242
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Ambient Geographic Information (AGI)
 conceptual space
 Geographical Shared Data Source (GSDS)
 Participatory Geographic Information (PGI)
 semantics
 Shared Data Source (SDS)
 visualization
 Volunteered Geographic Information (VGI)
K10plus-PPN:1679482130
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68444360   QR-Code
zum Seitenanfang