Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Antonczyk, Dirk [VerfasserIn]   i
 Mammen, Enno [VerfasserIn]   i
Titel:A nonparametric approach to identify age, time, and cohort effects
Verf.angabe:Dirk Antonczyk, Bernd Fitzenberger, Enno Mammen, Kyusang Yu
Jahr:2020
Jahr des Originals:2019
Umfang:20 S.
Fussnoten:Gesehen am 28.10.2019 ; Available online 11 May 2019
Titel Quelle:Enthalten in: Journal of statistical planning and inference
Ort Quelle:Amsterdam : North-Holland Publ. Co., 1977
Jahr Quelle:2020
Band/Heft Quelle:204(2020), Seite 96-115
ISSN Quelle:0378-3758
Abstract:Empirical studies in the social sciences and biometrics often rely on data and models where a number of individuals born at different dates are observed at several points in time, and the relationship of interest centers on the effects of age a, cohort c, and time t. Because of t=a+c, the design is degenerate and one is automatically confronted with the associated (linear) identification problem studied intensively for parametric models (Mason and Fienberg 1985; MaCurdy and Mroz 1995; Kuang, Nielsen and Nielsen 2008a,b). Nonlinear time, age, and cohort effects can be identified in an additive model. The present study seeks to solve the identification problem employing a nonparametric estimation approach: We develop an additive model which is solved using a backfitting algorithm, in the spirit of Mammen et al. (1999). Our approach has the advantage that we do not have to worry about the parametric specification and its impact on the identification problem. The results can easily be interpreted, as the smooth backfitting algorithm is a projection of the data onto the space of additive models. We develop a complete asymptotic distribution theory for nonparametric estimators based on kernel smoothing and apply the method to a study on wage inequality in Germany between 1975 and 2004.
DOI:doi:10.1016/j.jspi.2019.04.009
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.jspi.2019.04.009
 Verlag: http://www.sciencedirect.com/science/article/pii/S037837581930045X
 DOI: https://doi.org/10.1016/j.jspi.2019.04.009
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Additive model
 Age-cohort models
 Kernel smoothing
 Nonparametric smoothing
K10plus-PPN:1680044737
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68446682   QR-Code
zum Seitenanfang