Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Constantinou, Iordania [VerfasserIn]   i
 Jendrusch, Michael [VerfasserIn]   i
 Aspert, Théo [VerfasserIn]   i
 Görlitz, Frederik [VerfasserIn]   i
 Schulze, André [VerfasserIn]   i
 Charvin, Gilles [VerfasserIn]   i
 Knop, Michael [VerfasserIn]   i
Titel:Self-learning microfluidic platform for single-cell imaging and classification in flow
Verf.angabe:Iordania Constantinou, Michael Jendrusch, Théo Aspert, Frederik Görlitz, André Schulze, Gilles Charvin and Michael Knop
E-Jahr:2019
Jahr:9 May 2019
Umfang:21 S.
Fussnoten:Gesehen am 29.10.2019
Titel Quelle:Enthalten in: Micromachines
Ort Quelle:Basel : MDPI, 2010
Jahr Quelle:2019
Band/Heft Quelle:10(2019,5) Artikel-Nummer 311, 21 Seiten
ISSN Quelle:2072-666X
Abstract:Single-cell analysis commonly requires the confinement of cell suspensions in an analysis chamber or the precise positioning of single cells in small channels. Hydrodynamic flow focusing has been broadly utilized to achieve stream confinement in microchannels for such applications. As imaging flow cytometry gains popularity, the need for imaging-compatible microfluidic devices that allow for precise confinement of single cells in small volumes becomes increasingly important. At the same time, high-throughput single-cell imaging of cell populations produces vast amounts of complex data, which gives rise to the need for versatile algorithms for image analysis. In this work, we present a microfluidics-based platform for single-cell imaging in-flow and subsequent image analysis using variational autoencoders for unsupervised characterization of cellular mixtures. We use simple and robust Y-shaped microfluidic devices and demonstrate precise 3D particle confinement towards the microscope slide for high-resolution imaging. To demonstrate applicability, we use these devices to confine heterogeneous mixtures of yeast species, brightfield-image them in-flow and demonstrate fully unsupervised, as well as few-shot classification of single-cell images with 88% accuracy.
DOI:doi:10.3390/mi10050311
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag ; Resolving-System: https://doi.org/10.3390/mi10050311
 Volltext: https://www.mdpi.com/2072-666X/10/5/311
 DOI: https://doi.org/10.3390/mi10050311
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:3D flow focusing
 3D particle focusing
 bioMEMS
 microfluidics
 neural networks
 particle/cell imaging
 unsupervised learning
 variational inference
K10plus-PPN:1680651226
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68447812   QR-Code
zum Seitenanfang