| Online-Ressource |
Verfasst von: | Maron, Roman C. [VerfasserIn]  |
| Weichenthal, Michael [VerfasserIn]  |
| Utikal, Jochen [VerfasserIn]  |
| Hekler, Achim [VerfasserIn]  |
| Berking, Carola [VerfasserIn]  |
| Hauschild, Axel [VerfasserIn]  |
| Enk, Alexander [VerfasserIn]  |
| Haferkamp, Sebastian [VerfasserIn]  |
| Klode, Joachim [VerfasserIn]  |
| Schadendorf, Dirk [VerfasserIn]  |
| Jansen, Philipp [VerfasserIn]  |
| Holland-Letz, Tim [VerfasserIn]  |
| Schilling, Bastian [VerfasserIn]  |
| Kalle, Christof von [VerfasserIn]  |
| Fröhling, Stefan [VerfasserIn]  |
| Gaiser, Maria [VerfasserIn]  |
| Hartmann, Daniela [VerfasserIn]  |
| Gesierich, Anja Heike [VerfasserIn]  |
| Kähler, Katharina C. [VerfasserIn]  |
| Wehkamp, Ulrike [VerfasserIn]  |
| Karoglan, Ante [VerfasserIn]  |
| Bär, Claudia [VerfasserIn]  |
| Brinker, Titus Josef [VerfasserIn]  |
Titel: | Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks |
Verf.angabe: | Roman C. Maron, Michael Weichenthal, Jochen S. Utikal, Achim Hekler, Carola Berking, Axel Hauschild, Alexander H. Enk, Sebastian Haferkamp, Joachim Klode, Dirk Schadendorf, Philipp Jansen, Tim Holland-Letz, Bastian Schilling, Christof von Kalle, Stefan Fröhling, Maria R. Gaiser, Daniela Hartmann, Anja Gesierich, Katharina C. Kähler, Ulrike Wehkamp, Ante Karoglan, Claudia Bär, Titus J. Brinker, Collabrators |
E-Jahr: | 2019 |
Jahr: | 14 August 2019 |
Umfang: | 9 S. |
Fussnoten: | Gesehen am 06.11.2019 |
Titel Quelle: | Enthalten in: European journal of cancer |
Ort Quelle: | Amsterdam [u.a.] : Elsevier, 1992 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 119(2019), Seite 57-65 |
ISSN Quelle: | 1879-0852 |
Abstract: | Background - Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer screenings in which multiple diagnoses need to be taken into account. - Methods - Using 11,444 dermoscopic images, which covered dermatologic diagnoses comprising the majority of commonly pigmented skin lesions commonly faced in skin cancer screenings, a CNN was trained through novel deep learning techniques. A test set of 300 biopsy-verified images was used to compare the classifier's performance with that of 112 dermatologists from 13 German university hospitals. The primary end-point was the correct classification of the different lesions into benign and malignant. The secondary end-point was the correct classification of the images into one of the five diagnostic categories. - Findings - Sensitivity and specificity of dermatologists for the primary end-point were 74.4% (95% confidence interval [CI]: 67.0-81.8%) and 59.8% (95% CI: 49.8-69.8%), respectively. At equal sensitivity, the algorithm achieved a specificity of 91.3% (95% CI: 85.5-97.1%). For the secondary end-point, the mean sensitivity and specificity of the dermatologists were at 56.5% (95% CI: 42.8-70.2%) and 89.2% (95% CI: 85.0-93.3%), respectively. At equal sensitivity, the algorithm achieved a specificity of 98.8%. Two-sided McNemar tests revealed significance for the primary end-point (p < 0.001). For the secondary end-point, outperformance (p < 0.001) was achieved except for basal cell carcinoma (on-par performance). - Interpretation - Our findings show that automated classification of dermoscopic melanoma and nevi images is extendable to a multiclass classification problem, thus better reflecting clinical differential diagnoses, while still outperforming dermatologists at a significant level (p < 0.001). |
DOI: | doi:10.1016/j.ejca.2019.06.013 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Verlag ; Resolving-System: https://doi.org/10.1016/j.ejca.2019.06.013 |
| Verlag: http://www.sciencedirect.com/science/article/pii/S0959804919303818 |
| DOI: https://doi.org/10.1016/j.ejca.2019.06.013 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Artificial intelligence |
| Melanoma |
| Skin cancer |
| Skin cancer screening |
K10plus-PPN: | 168116910X |
Verknüpfungen: | → Zeitschrift |
Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks / Maron, Roman C. [VerfasserIn]; 14 August 2019 (Online-Ressource)