Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Maron, Roman C. [VerfasserIn]   i
 Weichenthal, Michael [VerfasserIn]   i
 Utikal, Jochen [VerfasserIn]   i
 Hekler, Achim [VerfasserIn]   i
 Berking, Carola [VerfasserIn]   i
 Hauschild, Axel [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Haferkamp, Sebastian [VerfasserIn]   i
 Klode, Joachim [VerfasserIn]   i
 Schadendorf, Dirk [VerfasserIn]   i
 Jansen, Philipp [VerfasserIn]   i
 Holland-Letz, Tim [VerfasserIn]   i
 Schilling, Bastian [VerfasserIn]   i
 Kalle, Christof von [VerfasserIn]   i
 Fröhling, Stefan [VerfasserIn]   i
 Gaiser, Maria [VerfasserIn]   i
 Hartmann, Daniela [VerfasserIn]   i
 Gesierich, Anja Heike [VerfasserIn]   i
 Kähler, Katharina C. [VerfasserIn]   i
 Wehkamp, Ulrike [VerfasserIn]   i
 Karoglan, Ante [VerfasserIn]   i
 Bär, Claudia [VerfasserIn]   i
 Brinker, Titus Josef [VerfasserIn]   i
Titel:Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks
Verf.angabe:Roman C. Maron, Michael Weichenthal, Jochen S. Utikal, Achim Hekler, Carola Berking, Axel Hauschild, Alexander H. Enk, Sebastian Haferkamp, Joachim Klode, Dirk Schadendorf, Philipp Jansen, Tim Holland-Letz, Bastian Schilling, Christof von Kalle, Stefan Fröhling, Maria R. Gaiser, Daniela Hartmann, Anja Gesierich, Katharina C. Kähler, Ulrike Wehkamp, Ante Karoglan, Claudia Bär, Titus J. Brinker, Collabrators
E-Jahr:2019
Jahr:14 August 2019
Umfang:9 S.
Fussnoten:Gesehen am 06.11.2019
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2019
Band/Heft Quelle:119(2019), Seite 57-65
ISSN Quelle:1879-0852
Abstract:Background - Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer screenings in which multiple diagnoses need to be taken into account. - Methods - Using 11,444 dermoscopic images, which covered dermatologic diagnoses comprising the majority of commonly pigmented skin lesions commonly faced in skin cancer screenings, a CNN was trained through novel deep learning techniques. A test set of 300 biopsy-verified images was used to compare the classifier's performance with that of 112 dermatologists from 13 German university hospitals. The primary end-point was the correct classification of the different lesions into benign and malignant. The secondary end-point was the correct classification of the images into one of the five diagnostic categories. - Findings - Sensitivity and specificity of dermatologists for the primary end-point were 74.4% (95% confidence interval [CI]: 67.0-81.8%) and 59.8% (95% CI: 49.8-69.8%), respectively. At equal sensitivity, the algorithm achieved a specificity of 91.3% (95% CI: 85.5-97.1%). For the secondary end-point, the mean sensitivity and specificity of the dermatologists were at 56.5% (95% CI: 42.8-70.2%) and 89.2% (95% CI: 85.0-93.3%), respectively. At equal sensitivity, the algorithm achieved a specificity of 98.8%. Two-sided McNemar tests revealed significance for the primary end-point (p < 0.001). For the secondary end-point, outperformance (p < 0.001) was achieved except for basal cell carcinoma (on-par performance). - Interpretation - Our findings show that automated classification of dermoscopic melanoma and nevi images is extendable to a multiclass classification problem, thus better reflecting clinical differential diagnoses, while still outperforming dermatologists at a significant level (p < 0.001).
DOI:doi:10.1016/j.ejca.2019.06.013
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Verlag ; Resolving-System: https://doi.org/10.1016/j.ejca.2019.06.013
 Verlag: http://www.sciencedirect.com/science/article/pii/S0959804919303818
 DOI: https://doi.org/10.1016/j.ejca.2019.06.013
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Melanoma
 Skin cancer
 Skin cancer screening
K10plus-PPN:168116910X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68451016   QR-Code
zum Seitenanfang