Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kowalewski, Karl-Friedrich [VerfasserIn]   i
 Garrow, Carly R. [VerfasserIn]   i
 Schmidt, Mona Wanda [VerfasserIn]   i
 Benner, Laura [VerfasserIn]   i
 Müller, Beat P. [VerfasserIn]   i
 Nickel, Felix [VerfasserIn]   i
Titel:Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying
Verf.angabe:Karl-Friedrich Kowalewski, Carly R. Garrow, Mona W. Schmidt, Laura Benner, Beat P. Müller-Stich, Felix Nickel
E-Jahr:2019
Jahr:[November 2019]
Umfang:9 S.
Illustrationen:1 Diagramm
Fussnoten:First online: 21 February 2019 ; Gesehen am 06.11.2019
Titel Quelle:Enthalten in: Surgical endoscopy and other interventional techniques
Ort Quelle:New York : Springer-Verlag, 2002
Jahr Quelle:2019
Band/Heft Quelle:33(2019), 11, Seite 3732-3740
ISSN Quelle:1432-2218
Abstract:IntroductionThe most common way of assessing surgical performance is by expert raters to view a surgical task and rate a trainee’s performance. However, there is huge potential for automated skill assessment and workflow analysis using modern technology. The aim of the present study was to evaluate machine learning (ML) algorithms using the data of a Myo armband as a sensor device for skills level assessment and phase detection in laparoscopic training.Materials and methodsParticipants of three experience levels in laparoscopy performed a suturing and knot tying task on silicon models. Experts rated performance using Objective Structured Assessment of Surgical Skills (OSATS). Participants wore Myo armbands (Thalmic Labs™, Ontario, Canada) to record acceleration, angular velocity, orientation, and Euler orientation. ML algorithms (decision forest, neural networks, boosted decision tree) were compared for skill level assessment and phase detection.Results28 participants (8 beginner, 10 intermediate, 10 expert) were included, and 99 knots were available for analysis. A neural network regression model had the lowest mean absolute error in predicting OSATS score (3.7 ± 0.6 points, r2 = 0.03 ± 0.81; OSATS min.-max.: 4-37 points). An ensemble of binary-class neural networks yielded the highest accuracy in predicting skill level (beginners: 82.2% correctly identified, intermediate: 3.0%, experts: 79.5%) whereas standard statistical analysis failed to discriminate between skill levels. Phase detection on raw data showed the best results with a multi-class decision jungle (average 16% correctly identified), but improved to 43% average accuracy with two-class boosted decision trees after Dynamic time warping (DTW) application.ConclusionModern machine learning algorithms aid in interpreting complex surgical motion data, even when standard analysis fails. Dynamic time warping offers the potential to process and compare surgical motion data in order to allow automated surgical workflow detection. However, further research is needed to interpret and standardize available data and improve sensor accuracy.
DOI:doi:10.1007/s00464-019-06667-4
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1007/s00464-019-06667-4
 DOI: https://doi.org/10.1007/s00464-019-06667-4
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Electromyography
 Laparoscopic training
 Laparoscopy
 Machine learning
 Myo armband
 Neural networks
 Skill assessment
 Surgical education
 Workflow analysis
K10plus-PPN:1681174995
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68451062   QR-Code
zum Seitenanfang