Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Zhang, Meng [VerfasserIn]  |
| Zeng, Yongnian [VerfasserIn]  |
| Huang, Wei [VerfasserIn]  |
Titel: | Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes |
Verf.angabe: | Meng Zhang, Yongnian Zeng, Wei Huang, Songnian Li |
Jahr: | 2019 |
Jahr des Originals: | 2018 |
Umfang: | 18 S. |
Fussnoten: | Gesehen am 12.11.2019 ; Published online: 17 May 2018 |
Titel Quelle: | Enthalten in: Geocarto international |
Ort Quelle: | London [u.a.] : Taylor & Francis, 1986 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 34(2019), 10, Seite 1144-1161 |
ISSN Quelle: | 1752-0762 |
Abstract: | Remote sensing has been proven promising in wetland mapping. However, conventional methods in a complex and heterogeneous urban landscape usually use mono temporal Landsat TM/ETM + images, which have great uncertainty due to the spectral similarity of different land covers, and pixel-based classifications may not meet the accuracy requirement. This paper proposes an approach that combines spatiotemporal fusion and object-based image analysis, using the spatial and temporal adaptive reflectance fusion model to generate a time series of Landsat 8 OLI images on critical dates of sedge swamp and paddy rice, and the time series of MODIS NDVI to calculate phenological parameters for identifying wetlands with an object-based method. The results of a case study indicate that different types of wetlands can be successfully identified, with 92.38%. The overall accuracy and 0.85 Kappa coefficient, and 85% and 90% for the user's accuracies of sedge swamp and paddy respectively. |
DOI: | doi:10.1080/10106049.2018.1474275 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1080/10106049.2018.1474275 |
| DOI: https://doi.org/10.1080/10106049.2018.1474275 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | china |
| complex heterogeneity |
| delta |
| land-cover classification |
| object-based image analysis |
| poyang lake |
| reflectance |
| spatiotemporal fusion |
| time-series |
| tm |
| urban landscape |
| vegetation |
| Wetland mapping |
| worldview-2 |
K10plus-PPN: | 1681680238 |
Verknüpfungen: | → Zeitschrift |
Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes / Zhang, Meng [VerfasserIn]; 2019 (Online-Ressource)
68453773