Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kleesiek, Jens Philipp [VerfasserIn]   i
 Urban, Gregor [VerfasserIn]   i
 Hubert, Alexander [VerfasserIn]   i
 Schwarz, Daniel [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Biller, Armin [VerfasserIn]   i
Titel:Deep MRI brain extraction
Titelzusatz:a 3D convolutional neural network for skull stripping
Verf.angabe:Jens Kleesiek, Gregor Urban, Alexander Hubert, Daniel Schwarz, Klaus Maier-Hein, Martin Bendszus, Armin Biller
E-Jahr:2016
Jahr:22 January 2016
Umfang:10 S.
Fussnoten:Gesehen am 20.11.2019
Titel Quelle:Enthalten in: NeuroImage
Ort Quelle:Orlando, Fla. : Academic Press, 1992
Jahr Quelle:2016
Band/Heft Quelle:129(2016), Seite 460-469
ISSN Quelle:1095-9572
Abstract:Brain extraction from magnetic resonance imaging (MRI) is crucial for many neuroimaging workflows. Current methods demonstrate good results on non-enhanced T1-weighted images, but struggle when confronted with other modalities and pathologically altered tissue. In this paper we present a 3D convolutional deep learning architecture to address these shortcomings. In contrast to existing methods, we are not limited to non-enhanced T1w images. When trained appropriately, our approach handles an arbitrary number of modalities including contrast-enhanced scans. Its applicability to MRI data, comprising four channels: non-enhanced and contrast-enhanced T1w, T2w and FLAIR contrasts, is demonstrated on a challenging clinical data set containing brain tumors (N=53), where our approach significantly outperforms six commonly used tools with a mean Dice score of 95.19. Further, the proposed method at least matches state-of-the-art performance as demonstrated on three publicly available data sets: IBSR, LPBA40 and OASIS, totaling N=135 volumes. For the IBSR (96.32) and LPBA40 (96.96) data set the convolutional neuronal network (CNN) obtains the highest average Dice scores, albeit not being significantly different from the second best performing method. For the OASIS data the second best Dice (95.02) results are achieved, with no statistical difference in comparison to the best performing tool. For all data sets the highest average specificity measures are evaluated, whereas the sensitivity displays about average results. Adjusting the cut-off threshold for generating the binary masks from the CNN's probability output can be used to increase the sensitivity of the method. Of course, this comes at the cost of a decreased specificity and has to be decided application specific. Using an optimized GPU implementation predictions can be achieved in less than one minute. The proposed method may prove useful for large-scale studies and clinical trials.
DOI:doi:10.1016/j.neuroimage.2016.01.024
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.neuroimage.2016.01.024
 Volltext: http://www.sciencedirect.com/science/article/pii/S1053811916000306
 DOI: https://doi.org/10.1016/j.neuroimage.2016.01.024
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Brain extraction
 Brain mask
 Convolutional networks
 Deep learning
 MRI
 Skull stripping
K10plus-PPN:168225156X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68458141   QR-Code
zum Seitenanfang