Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Menze, Bjoern Holger [VerfasserIn]   i
 Weber, Marc-André [VerfasserIn]   i
Titel:A generative probabilistic model and discriminative extensions for brain lesion segmentation
Titelzusatz:with application to tumor and stroke
Verf.angabe:Bjoern H. Menze, Koen Van Leemput, Danial Lashkari, Tammy Riklin-Raviv, Ezequiel Geremia, Esther Alberts, Philipp Gruber, Susanne Wegener, Marc-André Weber, Gabor Székely, Nicholas Ayache, and Polina Golland
Jahr:2016
Jahr des Originals:2015
Umfang:14 S.
Fussnoten:Date of Publication: 20 November 2015 ; Gesehen am 25.11.2019
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2016
Band/Heft Quelle:35(2016), 4, Seite 933-946
ISSN Quelle:1558-254X
Abstract:We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.
DOI:doi:10.1109/TMI.2015.2502596
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1109/TMI.2015.2502596
 Volltext: https://ieeexplore.ieee.org/document/7332941
 DOI: https://doi.org/10.1109/TMI.2015.2502596
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:acute ischemic stroke
 Algorithms
 anatomical structure
 Bayes methods
 Bayes Theorem
 Biological system modeling
 biomedical MRI
 brain
 brain lesion segmentation
 Brain modeling
 Brain Neoplasms
 brain tumor imaging sequences
 BRATS glioma patient scans
 closed-form EM update equations
 discriminative extensions
 EM segmenter
 expectation-maximization
 extended discriminative -discriminative model
 fluid-filled structure
 Gaussian mixtures
 Gaussian processes
 generative probabilistic model
 Humans
 hyper-intense lesion
 hypo-intense lesion
 image segmentation
 latent atlas prior distribution
 lesion posterior distributions
 Lesions
 magnetic resonance imaging
 Mathematical model
 Medical diagnostic imaging
 medical image processing
 mixture models
 Models, Statistical
 MRI
 multidimensional images
 object segmentation
 Probabilistic logic
 probabilistic tissue atlas
 Stroke
 subacute ischemic stroke
 tumor
K10plus-PPN:1683461053
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68459745   QR-Code
zum Seitenanfang