Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jentsch, Carsten [VerfasserIn]   i
 Lee, Eun Ryung [VerfasserIn]   i
 Mammen, Enno [VerfasserIn]   i
Titel:Time-dependent Poisson reduced rank models for political text data analysis
Verf.angabe:Carsten Jentsch, Eun Ryung Lee, Enno Mammen
Jahr:2020
Umfang:15 S.
Fussnoten:Available online 22 July 2019 ; Gesehen am 28.11.2019
Titel Quelle:Enthalten in: Computational statistics & data analysis
Ort Quelle:Amsterdam : Elsevier Science, 1983
Jahr Quelle:2020
Band/Heft Quelle:142(2020) Artikel-Nummer 106813, 15 Seiten
Abstract:We consider Poisson reduced rank models where parameters depend on time. Our main motivation comes from studies in comparative politics where one wants to locate party positions in a certain political space. For this purpose, several empirical methods have been proposed using text as data sources. As the data structure of texts is quite complex, its analysis to extract information is generally a difficult task. Furthermore, political texts usually contain a large number of words such that a simultaneous analysis of word counts becomes challenging. In this paper, we consider Poisson models for each word count simultaneously and provide a statistical method suitable to analyze political text data. We consider a novel model which allows the political lexicon to change over time and develop an estimation procedure based on LASSO and fused LASSO penalization techniques to address high-dimensionality via significant dimension reduction. This model gives insights into the potentially changing use of words by left and right-wing parties over time. The procedure allows to identify automatically those words having a discriminating effect between party positions. To address the dependence structure of word counts over time, we propose integer-valued time series processes to implement a suitable bootstrap method for constructing confidence intervals for the model parameters. We apply our approach to party manifesto data from German parties over seven federal elections after German reunification. The approach does not require any a priori information nor expert knowledge to process the data.
DOI:doi:10.1016/j.csda.2019.106813
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag ; Resolving-System: https://doi.org/10.1016/j.csda.2019.106813
 Volltext: http://www.sciencedirect.com/science/article/pii/S0167947319301586
 DOI: https://doi.org/10.1016/j.csda.2019.106813
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Count data
 Dimension reduction
 Fused LASSO
 High-dimensional data
 INAR time series models
 LASSO
 Party manifestos
 Penalization
 Political lexicon
 Political spectrum
 Term document matrices
 Text data
 Wordfish
K10plus-PPN:1683692403
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68461254   QR-Code
zum Seitenanfang