Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Nachbar, Mario [VerfasserIn]   i
 Duft, Denis [VerfasserIn]   i
 Leisner, Thomas [VerfasserIn]   i
Titel:The vapor pressure over nano-crystalline ice
Verf.angabe:Mario Nachbar, Denis Duft, and Thomas Leisner
E-Jahr:2018
Jahr:8 March 2018
Umfang:13 S.
Fussnoten:Gesehen am 04.12.2019
Titel Quelle:Enthalten in: Atmospheric chemistry and physics
Ort Quelle:Katlenburg-Lindau : EGU, 2001
Jahr Quelle:2018
Band/Heft Quelle:18(2018), 5, Seite 3419-3431
ISSN Quelle:1680-7324
Abstract:Abstract: The crystallization of amorphous solid water (ASW) is known to form nano-crystalline ice. The influence of the nanoscale crystallite size on physical properties like the vapor pressure is relevant for processes in which the crystallization of amorphous ices occurs, e.g., in interstellar ices or cold ice cloud formation in planetary atmospheres, but up to now is not well understood. Here, we present laboratory measurements on the saturation vapor pressure over ice crystallized from ASW between 135 and 190 K. Below 160 K, where the crystallization of ASW is known to form nano-crystalline ice, we obtain a saturation vapor pressure that is 100 to 200 % higher compared to stable hexagonal ice. This elevated vapor pressure is in striking contrast to the vapor pressure of stacking disordered ice which is expected to be the prevailing ice polymorph at these temperatures with a vapor pressure at most 18 % higher than that of hexagonal ice. This apparent discrepancy can be reconciled by assuming that nanoscale crystallites form in the crystallization process of ASW. The high curvature of the nano-crystallites results in a vapor pressure increase that can be described by the Kelvin equation. Our measurements are consistent with the assumption that ASW is the first solid form of ice deposited from the vapor phase at temperatures up to 160 K. Nano-crystalline ice with a mean diameter between 7 and 19 nm forms thereafter by crystallization within the ASW matrix. The estimated crystal sizes are in agreement with reported crystal size measurements and remain stable for hours below 160 K. Thus, this ice polymorph may be regarded as an independent phase for many atmospheric processes below 160 K and we parameterize its vapor pressure using a constant Gibbs free energy difference of (982 ± 182) J mol −1 relative to hexagonal ice.
DOI:doi:10.5194/acp-18-3419-2018
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/https://doi.org/10.5194/acp-18-3419-2018
 Volltext: https://www.atmos-chem-phys.net/18/3419/2018/
 DOI: https://doi.org/10.5194/acp-18-3419-2018
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1684181925
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68463754   QR-Code
zum Seitenanfang