| Online-Ressource |
Verfasst von: | Baumann, Stefan [VerfasserIn]  |
| Renker, Matthias [VerfasserIn]  |
| Schoepf, U. Joseph [VerfasserIn]  |
| De Cecco, Carlo N. [VerfasserIn]  |
| Coenen, Adriaan [VerfasserIn]  |
| De Geer, Jakob [VerfasserIn]  |
| Kruk, Mariusz [VerfasserIn]  |
| Kim, Young-Hak [VerfasserIn]  |
| Albrecht, Moritz H. [VerfasserIn]  |
| Duguay, Taylor M. [VerfasserIn]  |
| Jacobs, Brian E. [VerfasserIn]  |
| Bayer, Richard R. [VerfasserIn]  |
| Litwin, Sheldon E. [VerfasserIn]  |
| Weiß, Christel [VerfasserIn]  |
| Akın, Ibrahim [VerfasserIn]  |
| Borggrefe, Martin [VerfasserIn]  |
| Yang, Dong Hyun [VerfasserIn]  |
| Kepka, Cezary [VerfasserIn]  |
| Persson, Anders [VerfasserIn]  |
| Nieman, Koen [VerfasserIn]  |
| Tesche, Christian [VerfasserIn]  |
Titel: | Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry |
Verf.angabe: | Stefan Baumann, Matthias Renker, U. Joseph Schoepf, Carlo N. De Cecco, Adriaan Coenen, Jakob De Geer, Mariusz Kruk, Young-Hak Kim, Moritz H. Albrecht, Taylor M. Duguay, Brian E. Jacobs, Richard R. Bayer, Sheldon E. Litwin, Christel Weiss, Ibrahim Akin, Martin Borggrefe, Dong Hyun Yang, Cezary Kepka, Anders Persson, Koen Nieman, Christian Tesche |
Jahr: | 2019 |
Umfang: | 6 S. |
Fussnoten: | Gesehen am 03.01.2020 |
Titel Quelle: | Enthalten in: European journal of radiology |
Ort Quelle: | Amsterdam [u.a.] : Elsevier Science, 1990 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 119(2019) Artikel-Nummer 108657, 6 Seiten |
ISSN Quelle: | 1872-7727 |
Abstract: | PURPOSE: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFRML) for the detection of lesion-specific ischemia. - METHOD: Five centers enrolled 351 patients (73.5% male) with 525 vessels in the MACHINE (Machine leArning Based CT angiograpHy derIved FFR: a Multi-ceNtEr) registry. CT-FFRML and invasive FFR ≤ 0.80 were considered hemodynamically significant, whereas cCTA luminal stenosis ≥50% was considered obstructive. The diagnostic performance to assess lesion-specific ischemia in both men and women was assessed on a per-vessel basis. - RESULTS: In total, 398 vessels in men and 127 vessels in women were included. Compared to invasive FFR, CT-FFRML reached a sensitivity, specificity, positive predictive value, and negative predictive value of 78% (95%CI 72-84), 79% (95%CI 73-84), 75% (95%CI 69-79), and 82% (95%CI: 76-86) in men vs. 75% (95%CI 58-88), 81 (95%CI 72-89), 61% (95%CI 50-72) and 89% (95%CI 82-94) in women, respectively. CT-FFRML showed no statistically significant difference in the area under the receiver-operating characteristic curve (AUC) in men vs. women (AUC: 0.83 [95%CI 0.79-0.87] vs. 0.83 [95%CI 0.75-0.89], p = 0.89). CT-FFRML was not superior to cCTA alone [AUC: 0.83 (95%CI: 0.75-0.89) vs. 0.74 (95%CI: 0.65-0.81), p = 0.12] in women, but showed a statistically significant improvement in men [0.83 (95%CI: 0.79-0.87) vs. 0.76 (95%CI: 0.71-0.80), p = 0.007]. - CONCLUSIONS: Machine-learning based CT-FFR performs equally in men and women with superior diagnostic performance over cCTA alone for the detection of lesion-specific ischemia. |
DOI: | doi:10.1016/j.ejrad.2019.108657 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.ejrad.2019.108657 |
| DOI: https://doi.org/10.1016/j.ejrad.2019.108657 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Computed Tomography Angiography |
| Coronary Angiography |
| Coronary artery disease |
| Coronary Stenosis |
| Epidemiologic Methods |
| Female |
| Fractional flow reserve |
| Fractional Flow Reserve, Myocardial |
| Hemodynamics |
| Humans |
| Machine learning |
| Machine Learning |
| Male |
| Middle Aged |
| Myocardial Ischemia |
| Sex Factors |
| Spiral computed tomography |
| Tomography, Spiral Computed |
K10plus-PPN: | 1686400802 |
Verknüpfungen: | → Zeitschrift |
Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry / Baumann, Stefan [VerfasserIn]; 2019 (Online-Ressource)