| Online-Ressource |
Verfasst von: | Jordan, Jakob [VerfasserIn]  |
| Petrovici, Mihai A. [VerfasserIn]  |
| Breitwieser, Oliver [VerfasserIn]  |
| Schemmel, Johannes [VerfasserIn]  |
| Meier, Karlheinz [VerfasserIn]  |
| Diesmann, Markus [VerfasserIn]  |
| Tetzlaff, Tom [VerfasserIn]  |
Titel: | Deterministic networks for probabilistic computing |
Verf.angabe: | Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier, Markus Diesmann & Tom Tetzlaff |
E-Jahr: | 2019 |
Jahr: | 4 December 2019 |
Fussnoten: | Gesehen am 17.01.2020 |
Titel Quelle: | Enthalten in: Scientific reports |
Ort Quelle: | [London] : Macmillan Publishers Limited, part of Springer Nature, 2011 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 9(2019) Artikel-Nummer 18303, 17 Seiten |
ISSN Quelle: | 2045-2322 |
Abstract: | Neuronal network models of high-level brain functions such as memory recall and reasoning often rely on the presence of some form of noise. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. In vivo, synaptic background input has been suggested to serve as the main source of noise in biological neuronal networks. However, the finiteness of the number of such noise sources constitutes a challenge to this idea. Here, we show that shared-noise correlations resulting from a finite number of independent noise sources can substantially impair the performance of stochastic network models. We demonstrate that this problem is naturally overcome by replacing the ensemble of independent noise sources by a deterministic recurrent neuronal network. By virtue of inhibitory feedback, such networks can generate small residual spatial correlations in their activity which, counter to intuition, suppress the detrimental effect of shared input. We exploit this mechanism to show that a single recurrent network of a few hundred neurons can serve as a natural noise source for a large ensemble of functional networks performing probabilistic computations, each comprising thousands of units. |
DOI: | doi:10.1038/s41598-019-54137-7 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1038/s41598-019-54137-7 |
| Volltext: https://www.nature.com/articles/s41598-019-54137-7 |
| DOI: https://doi.org/10.1038/s41598-019-54137-7 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1687683166 |
Verknüpfungen: | → Zeitschrift |
Deterministic networks for probabilistic computing / Jordan, Jakob [VerfasserIn]; 4 December 2019 (Online-Ressource)