Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jordan, Jakob [VerfasserIn]   i
 Petrovici, Mihai A. [VerfasserIn]   i
 Breitwieser, Oliver [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
 Meier, Karlheinz [VerfasserIn]   i
 Diesmann, Markus [VerfasserIn]   i
 Tetzlaff, Tom [VerfasserIn]   i
Titel:Deterministic networks for probabilistic computing
Verf.angabe:Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier, Markus Diesmann & Tom Tetzlaff
E-Jahr:2019
Jahr:4 December 2019
Fussnoten:Gesehen am 17.01.2020
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Macmillan Publishers Limited, part of Springer Nature, 2011
Jahr Quelle:2019
Band/Heft Quelle:9(2019) Artikel-Nummer 18303, 17 Seiten
ISSN Quelle:2045-2322
Abstract:Neuronal network models of high-level brain functions such as memory recall and reasoning often rely on the presence of some form of noise. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. In vivo, synaptic background input has been suggested to serve as the main source of noise in biological neuronal networks. However, the finiteness of the number of such noise sources constitutes a challenge to this idea. Here, we show that shared-noise correlations resulting from a finite number of independent noise sources can substantially impair the performance of stochastic network models. We demonstrate that this problem is naturally overcome by replacing the ensemble of independent noise sources by a deterministic recurrent neuronal network. By virtue of inhibitory feedback, such networks can generate small residual spatial correlations in their activity which, counter to intuition, suppress the detrimental effect of shared input. We exploit this mechanism to show that a single recurrent network of a few hundred neurons can serve as a natural noise source for a large ensemble of functional networks performing probabilistic computations, each comprising thousands of units.
DOI:doi:10.1038/s41598-019-54137-7
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1038/s41598-019-54137-7
 Volltext: https://www.nature.com/articles/s41598-019-54137-7
 DOI: https://doi.org/10.1038/s41598-019-54137-7
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1687683166
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68477716   QR-Code
zum Seitenanfang