Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Manica, Matteo [VerfasserIn]   i
 Oskooei, Ali [VerfasserIn]   i
 Born, Jannis [VerfasserIn]   i
 Subramanian, Vigneshwari [VerfasserIn]   i
 Sáez Rodríguez, Julio [VerfasserIn]   i
 Rodríguez Martínez, María [VerfasserIn]   i
Titel:Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders
Verf.angabe:Matteo Manica, Ali Oskooei, Jannis Born, Vigneshwari Subramanian, Julio Sáez-Rodríguez, and María Rodríguez Martínez
E-Jahr:2019
Jahr:October 16, 2019
Umfang:10 S.
Fussnoten:Gesehen am 17.01.2020
Titel Quelle:Enthalten in: Molecular pharmaceutics
Ort Quelle:Washington, DC : American Chemical Society, 2004
Jahr Quelle:2019
Band/Heft Quelle:16(2019), 12, Seite 4797-4806
ISSN Quelle:1543-8392
Abstract:In line with recent advances in neural drug design and sensitivity prediction, we propose a novel architecture for interpretable prediction of anticancer compound sensitivity using a multimodal attention-based convolutional encoder. Our model is based on the three key pillars of drug sensitivity: compounds’ structure in the form of a SMILES sequence, gene expression profiles of tumors, and prior knowledge on intracellular interactions from protein-protein interaction networks. We demonstrate that our multiscale convolutional attention-based encoder significantly outperforms a baseline model trained on Morgan fingerprints and a selection of encoders based on SMILES, as well as the previously reported state-of-the-art for multimodal drug sensitivity prediction (R2 = 0.86 and RMSE = 0.89). Moreover, the explainability of our approach is demonstrated by a thorough analysis of the attention weights. We show that the attended genes significantly enrich apoptotic processes and that the drug attention is strongly correlated with a standard chemical structure similarity index. Finally, we report a case study of two receptor tyrosine kinase (RTK) inhibitors acting on a leukemia cell line, showcasing the ability of the model to focus on informative genes and submolecular regions of the two compounds. The demonstrated generalizability and the interpretability of our model testify to its potential for in silico prediction of anticancer compound efficacy on unseen cancer cells, positioning it as a valid solution for the development of personalized therapies as well as for the evaluation of candidate compounds in de novo drug design.
DOI:doi:10.1021/acs.molpharmaceut.9b00520
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.molpharmaceut.9b00520
 Volltext: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00520#
 DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00520
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1687790361
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68477723   QR-Code
zum Seitenanfang