Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Chen, Ji [VerfasserIn]   i
 Gruber, Oliver [VerfasserIn]   i
Titel:Neurobiological divergence of the positive and negative Schizophrenia subtypes identified on a new factor structure of psychopathology using non-negative factorization
Titelzusatz:an international machine learning study
Verf.angabe:Ji Chen, Kaustubh R. Patil, Susanne Weis, Kang Sim, Thomas Nickl-Jockschat, Juan Zhou, André Aleman, Iris E. Sommer, Edith J. Liemburg, Felix Hoffstaedter, Ute Habel, Birgit Derntl, Xiaojin Liu, Jona M. Fischer, Lydia Kogler, Christina Regenbogen, Vaibhav A. Diwadkar, Jeffrey A. Stanley, Valentin Riedl, Renaud Jardri, Oliver Gruber, Aristeidis Sotiras, Christos Davatzikos, Simon B. Eickhoff and the Pharmacotherapy Monitoring and Outcome Survey (PHAMOUS) investigators
Jahr:2020
Jahr des Originals:2019
Umfang:12 S.
Fussnoten:Available online 23 September 2019 ; Gesehen am 27.01.2020
Titel Quelle:Enthalten in: Biological psychiatry
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1985
Jahr Quelle:2020
Band/Heft Quelle:87(2020), 3, Seite 282-293
ISSN Quelle:1873-2402
Abstract:Background - Disentangling psychopathological heterogeneity in schizophrenia is challenging, and previous results remain inconclusive. We employed advanced machine learning to identify a stable and generalizable factorization of the Positive and Negative Syndrome Scale and used it to identify psychopathological subtypes as well as their neurobiological differentiations. - Methods - Positive and Negative Syndrome Scale data from the Pharmacotherapy Monitoring and Outcome Survey cohort (1545 patients; 586 followed up after 1.35 ± 0.70 years) were used for learning the factor structure by an orthonormal projective non-negative factorization. An international sample, pooled from 9 medical centers across Europe, the United States, and Asia (490 patients), was used for validation. Patients were clustered into psychopathological subtypes based on the identified factor structure, and the neurobiological divergence between the subtypes was assessed by classification analysis on functional magnetic resonance imaging connectivity patterns. - Results - A 4-factor structure representing negative, positive, affective, and cognitive symptoms was identified as the most stable and generalizable representation of psychopathology. It showed higher internal consistency than the original Positive and Negative Syndrome Scale subscales and previously proposed factor models. Based on this representation, the positive-negative dichotomy was confirmed as the (only) robust psychopathological subtypes, and these subtypes were longitudinally stable in about 80% of the repeatedly assessed patients. Finally, the individual subtype could be predicted with good accuracy from functional connectivity profiles of the ventromedial frontal cortex, temporoparietal junction, and precuneus. - Conclusions - Machine learning applied to multisite data with cross-validation yielded a factorization generalizable across populations and medical systems. Together with subtyping and the demonstrated ability to predict subtype membership from neuroimaging data, this work further disentangles the heterogeneity in schizophrenia.
DOI:doi:10.1016/j.biopsych.2019.08.031
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.biopsych.2019.08.031
 Verlag: http://www.sciencedirect.com/science/article/pii/S000632231931707X
 DOI: https://doi.org/10.1016/j.biopsych.2019.08.031
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Brain imaging
 Machine learning
 Multivariate classification
 Non-negative factorization
 Schizophrenia
 Subtyping
K10plus-PPN:1688530363
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68480783   QR-Code
zum Seitenanfang