Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Reißl, Stefan [VerfasserIn]   i
 Klessen, Ralf S. [VerfasserIn]   i
 Pellegrini, Eric William [VerfasserIn]   i
Titel:Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust
Verf.angabe:Stefan Reissl, Ralf S. Klessen, Mordecai-Mark Mac Low, and Eric W. Pellegrini
E-Jahr:2018
Jahr:29 March 2018
Umfang:19 S.
Fussnoten:Gesehen am 27.01.2020
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2018
Band/Heft Quelle:611(2018) Artikel-Nummer A70, 19 Seiten
ISSN Quelle:1432-0746
Abstract:<i>Aim.<i/> We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process.<i>Methods.<i/> We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 10<sup>4<sup/>-10<sup>7<sup/> <i>M<i/><sub>⊙<sub/>, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 <i>μ<i/>m. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds.<i>Results.<i/> We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity.<i>Conclusions.<i/> We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star-formation process on either local or global scales.
DOI:doi:10.1051/0004-6361/201731698
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1051/0004-6361/201731698
 Verlag: https://www.aanda.org/articles/aa/abs/2018/03/aa31698-17/aa31698-17.html
 DOI: https://doi.org/10.1051/0004-6361/201731698
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1688589988
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68481017   QR-Code
zum Seitenanfang