Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kostrykin, Leonid [VerfasserIn]   i
 Schnörr, Christoph [VerfasserIn]   i
 Rohr, Karl [VerfasserIn]   i
Titel:Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information
Verf.angabe:L. Kostrykin, C. Schnörr, K. Rohr
E-Jahr:2019
Jahr:19 July 2019
Umfang:6 S.
Fussnoten:Gesehen am 29.01.2020
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2019
Band/Heft Quelle:58(2019) Artikel-Nummer 101536, 15 Seiten
ISSN Quelle:1361-8423
Abstract:Accurate and efficient segmentation of cell nuclei in fluorescence microscopy images plays a key role in many biological studies. Besides coping with image noise and other imaging artifacts, the separation of touching and partially overlapping cell nuclei is a major challenge. To address this, we introduce a globally optimal model-based approach for cell nuclei segmentation which jointly exploits shape and intensity information. Our approach is based on implicitly parameterized shape models, and we propose single-object and multi-object schemes. In the single-object case, the used shape parameterization leads to convex energies which can be directly minimized without requiring approximation. The multi-object scheme is based on multiple collaborating shapes and has the advantage that prior detection of individual cell nuclei is not needed. This scheme performs joint segmentation and cluster splitting. We describe an energy minimization scheme which converges close to global optima and exploits convex optimization such that our approach does not depend on the initialization nor suffers from local energy minima. The proposed approach is robust and computationally efficient. In contrast, previous shape-based approaches for cell segmentation either are computationally expensive, not globally optimal, or do not jointly exploit shape and intensity information. We successfully applied our approach to fluorescence microscopy images of five different cell types and performed a quantitative comparison with previous methods.
DOI:doi:10.1016/j.media.2019.101536
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.media.2019.101536
 Volltext: http://www.sciencedirect.com/science/article/pii/S1361841518307928
 DOI: https://doi.org/10.1016/j.media.2019.101536
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cell segmentation
 Cell-cluster splitting
 Convex optimization
 Fluorescence microscopy
 Global energy minimization
 Model fitting
K10plus-PPN:1688657983
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68481484   QR-Code
zum Seitenanfang