Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wasserthal, Jakob [VerfasserIn]   i
 Neher, Peter [VerfasserIn]   i
 Hirjak, Dusan [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
Titel:Combined tract segmentation and orientation mapping for bundle-specific tractography
Verf.angabe:Jakob Wasserthal, Peter F. Neher, Dusan Hirjak, Klaus H. Maier-Hein
E-Jahr:2019
Jahr:12 September 2019
Umfang:15 S.
Fussnoten:Gesehen am 30.01.2020
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2019
Band/Heft Quelle:58(2019) Artikel-Nummer 101559, 15 Seiten
ISSN Quelle:1361-8423
Abstract:While the major white matter tracts are of great interest to numerous studies in neuroscience and medicine, their manual dissection in larger cohorts from diffusion MRI tractograms is time-consuming, requires expert knowledge and is hard to reproduce. In previous work we presented tract orientation mapping (TOM) as a novel concept for bundle-specific tractography. It is based on a learned mapping from the original fiber orientation distribution function (FOD) peaks to tract specific peaks, called tract orientation maps. Each tract orientation map represents the voxel-wise principal orientation of one tract. Here, we present an extension of this approach that combines TOM with accurate segmentations of the tract outline and its start and end region. We also introduce a custom probabilistic tracking algorithm that samples from a Gaussian distribution with fixed standard deviation centered on each peak thus enabling more complete trackings on the tract orientation maps than deterministic tracking. These extensions enable the automatic creation of bundle-specific tractograms with previously unseen accuracy. We show for 72 different bundles on high quality, low quality and phantom data that our approach runs faster and produces more accurate bundle-specific tractograms than 7 state of the art benchmark methods while avoiding cumbersome processing steps like whole brain tractography, non-linear registration, clustering or manual dissection. Moreover, we show on 17 datasets that our approach generalizes well to datasets acquired with different scanners and settings as well as with pathologies. The code of our method is openly available at https://github.com/MIC-DKFZ/TractSeg.
DOI:doi:10.1016/j.media.2019.101559
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.media.2019.101559
 Volltext: http://www.sciencedirect.com/science/article/pii/S136184151930101X
 DOI: https://doi.org/10.1016/j.media.2019.101559
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Deep learning
 Diffusion-weighted imaging
 Fiber tractography
 Machine learning
K10plus-PPN:1688925031
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68482449   QR-Code
zum Seitenanfang