Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Synnatschke, Kevin [VerfasserIn]   i
 Cieslik, Patrick [VerfasserIn]   i
 Backes, Claudia [VerfasserIn]   i
Titel:Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides
Verf.angabe:Kevin Synnatschke, Patrick Arthur Cieslik, Andrew Harvey, Andres Castellanos-Gomez, Tian Tian, Chih-Jen Shih, Alexey Chernikov, Elton J. G. Santos, Jonathan N. Coleman, Claudia Backes
E-Jahr:2019
Jahr:November 27, 2019
Umfang:14 S.
Fussnoten:Gesehen am 04.02.2020
Titel Quelle:Enthalten in: Chemistry of materials
Ort Quelle:Washington, DC : American Chemical Society, 1989
Jahr Quelle:2019
Band/Heft Quelle:31(2019), 24, Seite 10049-10062
ISSN Quelle:1520-5002
Abstract:Because of their reduced dimensionality, two-dimensional materials show intriguing optical properties and strong light-matter interaction. In particular, group VI transition metal dichalcogenides have been extensively studied and proof-of-principle optical applications have been demonstrated. Most studies to date focus on individual mono- or bilayered micromechanically exfoliated samples, which often display significant variations between flakes. In this work, we study size-dependent optical properties of four group VI TMD materials: WS2, MoS2, WSe2, and MoSe2, each consisting of ensembles of nanosheets suspended in the liquid environment. Samples were produced by liquid-phase exfoliation and size-selected using cascade centrifugation with size and layer number distributions quantified by statistical atomic force microscopy. Differences in lateral size and layer number are reflected in systematic changes in the optical extinction and absorbance spectra, which we exploit to establish quantitative spectroscopic metrics to facilitate the measurement of nanosheet dimensions for each of the four materials. The lowest energy resonance, referred to as A-exciton, is analyzed in more detail. In all cases, an exponential red shift with increasing layer number is observed. Our experimental data, backed up with first-principle calculations, reveal that the magnitude of the shift is dependent on the molecular mass of the central metal atom (W, Mo), while the rate at which the peak shifts from monolayer to bulk depends on the band gap of the semiconductor.
DOI:doi:10.1021/acs.chemmater.9b02905
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.chemmater.9b02905
 DOI: https://doi.org/10.1021/acs.chemmater.9b02905
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1689229624
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68484616   QR-Code
zum Seitenanfang