Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Lichtenberg, Tim [VerfasserIn]   i
 Golabek, Gregor J. [VerfasserIn]   i
 Dullemond, Cornelis [VerfasserIn]   i
 Schönbächler, Maria [VerfasserIn]   i
 Gerya, Taras V. [VerfasserIn]   i
 Meyer, Michael R. [VerfasserIn]   i
Titel:Impact splash chondrule formation during planetesimal recycling
Verf.angabe:Tim Lichtenberg, Gregor J. Golabek, Cornelis P. Dullemond, Maria Schönbächler, Taras V. Gerya, Michael R. Meyer
E-Jahr:2018
Jahr:[2018]$n2017
Umfang:17 S.
Illustrationen:Illustrationen
Fussnoten:Available online 8 November 2017 ; Gesehen am 14.02.2020
Titel Quelle:Enthalten in: Icarus
Ort Quelle:Orlando, Fla. : Academ. Press, 1962
Jahr Quelle:2018
Band/Heft Quelle:302(2018), Seite 27-43
ISSN Quelle:0019-1035
Abstract:Chondrules, mm-sized igneous-textured spherules, are the dominant bulk silicate constituent of chondritic meteorites and originate from highly energetic, local processes during the first million years after the birth of the Sun. So far, an astrophysically consistent chondrule formation scenario explaining major chemical, isotopic and textural features, in particular Fe,Ni metal abundances, bulk Fe/Mg ratios and intra-chondrite chemical and isotopic diversity, remains elusive. Here, we examine the prospect of forming chondrules from impact splashes among planetesimals heated by radioactive decay of short-lived radionuclides using thermomechanical models of their interior evolution. We show that intensely melted planetesimals with interior magma oceans became rapidly chemically equilibrated and physically differentiated. Therefore, collisional interactions among such bodies would have resulted in chondrule-like but basaltic spherules, which are not observed in the meteoritic record. This inconsistency with the expected dynamical interactions hints at an incomplete understanding of the planetary growth regime during the lifetime of the solar protoplanetary disk. To resolve this conundrum, we examine how the observed chemical and isotopic features of chondrules constrain the dynamical environment of accreting chondrite parent bodies by interpreting the meteoritic record as an impact-generated proxy of early solar system planetesimals that underwent repeated collision and reaccretion cycles. Using a coupled evolution-collision model we demonstrate that the vast majority of collisional debris feeding the asteroid main belt must be derived from planetesimals which were partially molten at maximum. Therefore, the precursors of chondrite parent bodies either formed primarily small, from sub-canonical aluminum-26 reservoirs, or collisional destruction mechanisms were efficient enough to shatter planetesimals before they reached the magma ocean phase. Finally, we outline the window in parameter space for which chondrule formation from planetesimal collisions can be reconciled with the meteoritic record and how our results can be used to further constrain early solar system dynamics.
DOI:doi:10.1016/j.icarus.2017.11.004
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.icarus.2017.11.004
 Volltext: http://www.sciencedirect.com/science/article/pii/S0019103517302488
 DOI: https://doi.org/10.1016/j.icarus.2017.11.004
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Chondrule formation
 Meteorites
 Planetary formation
 Planetesimals
 Thermal histories
K10plus-PPN:1690085096
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68489068   QR-Code
zum Seitenanfang