Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jaumann, Stefan [VerfasserIn]   i
 Roth, Kurt [VerfasserIn]   i
Titel:Soil hydraulic material properties and layered architecture from time-lapse GPR
Verf.angabe:Stefan Jaumann, Kurt Roth
E-Jahr:2018
Jahr:25 Apr 2018
Umfang:23 S.
Fussnoten:Gesehen am 27.02.2020
Titel Quelle:Enthalten in: Hydrology and earth system sciences
Ort Quelle:Katlenburg-Lindau : EGU, 1997
Jahr Quelle:2018
Band/Heft Quelle:22(2018), 4, Seite 2551-2573
ISSN Quelle:1607-7938
Abstract:<p><strong>Abstract.</strong> Quantitative knowledge of the subsurface material distribution and its effective soil hydraulic material properties is essential to predict soil water movement. Ground-penetrating radar (GPR) is a noninvasive and nondestructive geophysical measurement method that is suitable to monitor hydraulic processes. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive to the soil water characteristic and the hydraulic conductivity function. In this work, we show that the GPR signal originating from both the subsurface architecture and the fluctuating groundwater table is suitable to estimate the position of layers within the subsurface architecture together with the associated effective soil hydraulic material properties with inversion methods. To that end, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water content to relative permittivity with the complex refractive index model (CRIM), and solve Maxwell's equations numerically. In order to analyze the GPR signal, we implemented a new heuristic algorithm that detects relevant signals in the radargram (events) and extracts the corresponding signal travel time and amplitude. This algorithm is applied to simulated as well as measured radargrams and the detected events are associated automatically. Using events instead of the full wave regularizes the inversion focussing on the relevant measurement signal. For optimization, we use a global-local approach with preconditioning. Starting from an ensemble of initial parameter sets drawn with a Latin hypercube algorithm, we sequentially couple a simulated annealing algorithm with a Levenberg-Marquardt algorithm. The method is applied to synthetic as well as measured data from the ASSESS test site. We show that the method yields reasonable estimates for the position of the layers as well as for the soil hydraulic material properties by comparing the results to references derived from ground truth data as well as from time domain reflectometry (TDR).</p>
DOI:doi:10.5194/hess-22-2551-2018
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/https://doi.org/10.5194/hess-22-2551-2018
 Verlag: https://www.hydrol-earth-syst-sci.net/22/2551/2018/
 DOI: https://doi.org/10.5194/hess-22-2551-2018
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1691165131
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68494113   QR-Code
zum Seitenanfang