Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bâldea, Ioan [VerfasserIn]   i
Titel:Evidence that molecules in molecular junctions may not be subject to the entire external perturbation applied to electrodes
Verf.angabe:Ioan Bâldea
E-Jahr:2020
Jahr:[2020]
Umfang:9 S.
Fussnoten:Gesehen am 11.03.2020
Titel Quelle:Enthalten in: Langmuir
Ort Quelle:Washington, DC : ACS Publ., 1985
Jahr Quelle:2020
Band/Heft Quelle:36(2020), 5, Seite 1329-1337
ISSN Quelle:1520-5827
Abstract:Whether molecules forming molecular junctions are really subject to the entire external perturbation applied to electrodes is an important issue, but so far, it has not received adequate consideration in the literature. In this paper, we demonstrate that, out of the temperature difference ΔTelectr between electrodes applied in thermopower measurements, molecules only feel a significantly smaller temperature difference (ΔTmolec < ΔTelectr). Rephrasing, temperature drops at metal-molecule interfaces are substantial. Our theoretical analysis to address this problem of fundamental importance for surface science is based on experimental data collected via ultraviolet photoelectron spectroscopy, transition voltage spectroscopy, and Seebeck coefficient measurements. An important practical consequence of the presently reported finding is that the energetic alignment of the frontier molecular orbital (HOMO or LUMO) of the embedded molecules with respect to the metallic Fermi level position deduced from thermopower data—and this is frequently the case in current studies of molecular electronics—is substantially overestimated. Another important result presented here is that, unlike the exponential length dependence characterizing electric conduction (which is a fingerprint for quantum tunneling), thermal conduction through the molecules considered (oligophenylene thiols and alkane thiols) exhibits a length dependence compatible with classical physics.
DOI:doi:10.1021/acs.langmuir.9b03430
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.langmuir.9b03430
 DOI: https://doi.org/10.1021/acs.langmuir.9b03430
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1692244787
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68503747   QR-Code
zum Seitenanfang