Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:González Maldonado, Sandra [VerfasserIn]   i
 Delorme, Stefan [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Heußel, Claus Peter [VerfasserIn]   i
 Kaaks, Rudolf [VerfasserIn]   i
Titel:Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography
Verf.angabe:Sandra González Maldonado, Stefan Delorme, Anika Hüsing, Erna Motsch, Hans-Ulrich Kauczor, Claus-Peter Heussel, Rudolf Kaaks
E-Jahr:2020
Jahr:February 14, 2020
Umfang:15 S.
Fussnoten:Gesehen am 26.03.2020
Titel Quelle:Enthalten in: JAMA network open
Ort Quelle:Chicago, Ill. : American Medical Association, 2018
Jahr Quelle:2020
Band/Heft Quelle:3(2020), 2, Artikel-ID e1921221, Seite 1-15
ISSN Quelle:2574-3805
Abstract:Importance Malignancy prediction models based on participant-related characteristics and imaging parameters from low-dose computed tomography (CT) may improve decision-making regarding nodule management and diagnosis in lung cancer screening. Objective To externally validate 5 malignancy prediction models that were developed in screening settings, compared with 3 models that were developed in clinical settings, in terms of discrimination and absolute risk calibration among participants in the German Lung Cancer Screening Intervention trial.Design, Setting, and Participants In this population-based diagnostic study, malignancy probabilities were estimated by applying 8 prediction models to data from 1159 participants in the intervention arm of the Lung Cancer Screening Intervention trial, a randomized clinical trial conducted from October 23, 2007, to April 30, 2016, with ongoing follow-up. This analysis considers end points up to 1 year after individuals’ last screening visit. Inclusion criteria for participants were at least 1 noncalcified pulmonary nodule detected on any of 5 annual screening visits, receiving a lung cancer diagnosis within the active screening phase of the Lung Cancer Screening Intervention trial, and an unequivocal identification of the malignant nodules. Data analysis was performed from February 1, 2019, through December 5, 2019. Interventions Five annual rounds of low-dose multislice CT.
DOI:doi:10.1001/jamanetworkopen.2019.21221
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1001/jamanetworkopen.2019.21221
 Volltext: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2760895
 DOI: https://doi.org/10.1001/jamanetworkopen.2019.21221
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1693373068
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68558460   QR-Code
zum Seitenanfang