| Online-Ressource |
Verfasst von: | González Maldonado, Sandra [VerfasserIn]  |
| Delorme, Stefan [VerfasserIn]  |
| Kauczor, Hans-Ulrich [VerfasserIn]  |
| Heußel, Claus Peter [VerfasserIn]  |
| Kaaks, Rudolf [VerfasserIn]  |
Titel: | Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography |
Verf.angabe: | Sandra González Maldonado, Stefan Delorme, Anika Hüsing, Erna Motsch, Hans-Ulrich Kauczor, Claus-Peter Heussel, Rudolf Kaaks |
E-Jahr: | 2020 |
Jahr: | February 14, 2020 |
Umfang: | 15 S. |
Fussnoten: | Gesehen am 26.03.2020 |
Titel Quelle: | Enthalten in: JAMA network open |
Ort Quelle: | Chicago, Ill. : American Medical Association, 2018 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 3(2020), 2, Artikel-ID e1921221, Seite 1-15 |
ISSN Quelle: | 2574-3805 |
Abstract: | Importance Malignancy prediction models based on participant-related characteristics and imaging parameters from low-dose computed tomography (CT) may improve decision-making regarding nodule management and diagnosis in lung cancer screening. Objective To externally validate 5 malignancy prediction models that were developed in screening settings, compared with 3 models that were developed in clinical settings, in terms of discrimination and absolute risk calibration among participants in the German Lung Cancer Screening Intervention trial.Design, Setting, and Participants In this population-based diagnostic study, malignancy probabilities were estimated by applying 8 prediction models to data from 1159 participants in the intervention arm of the Lung Cancer Screening Intervention trial, a randomized clinical trial conducted from October 23, 2007, to April 30, 2016, with ongoing follow-up. This analysis considers end points up to 1 year after individuals’ last screening visit. Inclusion criteria for participants were at least 1 noncalcified pulmonary nodule detected on any of 5 annual screening visits, receiving a lung cancer diagnosis within the active screening phase of the Lung Cancer Screening Intervention trial, and an unequivocal identification of the malignant nodules. Data analysis was performed from February 1, 2019, through December 5, 2019. Interventions Five annual rounds of low-dose multislice CT. |
DOI: | doi:10.1001/jamanetworkopen.2019.21221 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1001/jamanetworkopen.2019.21221 |
| Volltext: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2760895 |
| DOI: https://doi.org/10.1001/jamanetworkopen.2019.21221 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1693373068 |
Verknüpfungen: | → Zeitschrift |
Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography / González Maldonado, Sandra [VerfasserIn]; February 14, 2020 (Online-Ressource)