Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Spilger, Roman [VerfasserIn]   i
 Imle, Andrea [VerfasserIn]   i
 Lee, Ji Young [VerfasserIn]   i
 Müller, Barbara [VerfasserIn]   i
 Fackler, Oliver Till [VerfasserIn]   i
 Bartenschlager, Ralf [VerfasserIn]   i
 Rohr, Karl [VerfasserIn]   i
Titel:A recurrent neural network for particle tracking in microscopy images using future information, track hypotheses, and multiple detections
Verf.angabe:Roman Spilger, Andrea Imle, Ji-Young Lee, Barbara Müller, Oliver T. Fackler, Ralf Bartenschlager, Karl Rohr
E-Jahr:2020
Jahr:13 January 2020
Umfang:14 S.
Fussnoten:Gesehen am 30.03.2020
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on image processing
Ort Quelle:New York, NY : IEEE, 1992
Jahr Quelle:2020
Band/Heft Quelle:29(2020), Seite 3681-3694
ISSN Quelle:1941-0042
Abstract:Automatic tracking of particles in time-lapse fluorescence microscopy images is essential for quantifying the dynamic behavior of subcellular structures and virus structures. We introduce a novel particle tracking approach based on a deep recurrent neural network architecture that exploits past and future information in both forward and backward direction. Assignment probabilities are determined jointly across multiple detections, and the probability of missing detections is computed. In addition, existence probabilities are determined by the network to handle track initiation and termination. For correspondence finding, track hypotheses are propagated to future time points so that information at later time points can be used to resolve ambiguities. A handcrafted similarity measure and handcrafted motion features are not necessary. Manually labeled data is not required for network training. We evaluated the performance of our approach using image data of the Particle Tracking Challenge as well as real fluorescence microscopy image sequences of virus structures. It turned out that the proposed approach outperforms previous methods.
DOI:doi:10.1109/TIP.2020.2964515
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TIP.2020.2964515
 DOI: https://doi.org/10.1109/TIP.2020.2964515
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:assignment probabilities
 Biomedical imaging
 biomedical optical imaging
 deep learning
 Deep learning
 deep recurrent neural network architecture
 dynamic behavior
 fluorescence
 fluorescence microscopy image sequences
 image data
 image sequences
 Infectious diseases
 learning (artificial intelligence)
 medical image processing
 Microscopy
 microscopy images
 network training
 object tracking
 optical microscopy
 particle tracking
 Particle tracking
 probability
 recurrent neural nets
 Recurrent neural networks
 subcellular structures
 target tracking
 time-lapse fluorescence microscopy images
 track hypotheses
 track initiation
 Tracking
 virus structures
 Viruses (medical)
K10plus-PPN:1693480042
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68559249   QR-Code
zum Seitenanfang