| Online-Ressource |
Verfasst von: | Boehm, Udo [VerfasserIn]  |
| Annis, Jeffrey [VerfasserIn]  |
| Frank, Michael J. [VerfasserIn]  |
| Hawkins, Guy E. [VerfasserIn]  |
| Heathcote, Andrew [VerfasserIn]  |
| Kellen, David [VerfasserIn]  |
| Krypotos, Angelos-Miltiadis [VerfasserIn]  |
| Lerche, Veronika [VerfasserIn]  |
| Logan, Gordon D. [VerfasserIn]  |
| Palmeri, Thomas J. [VerfasserIn]  |
| van Ravenzwaaij, Don [VerfasserIn]  |
| Servant, Mathieu [VerfasserIn]  |
| Singmann, Henrik [VerfasserIn]  |
| Starns, Jeffrey J. [VerfasserIn]  |
| Voß, Andreas [VerfasserIn]  |
| Wiecki, Thomas V. [VerfasserIn]  |
| Matzke, Dora [VerfasserIn]  |
| Wagenmakers, Eric-Jan [VerfasserIn]  |
Titel: | Estimating across-trial variability parameters of the diffusion decision model |
Titelzusatz: | expert advice and recommendations |
Verf.angabe: | Udo Boehm, Jeffrey Annis, Michael J. Frank, Guy E. Hawkins, Andrew Heathcote, David Kellen, Angelos-Miltiadis Krypotos, Veronika Lerche, Gordon D. Logan, Thomas J. Palmeri, Don van Ravenzwaaij, Mathieu Servant, Henrik Singmann, Jeffrey J. Starns, Andreas Voss, Thomas V. Wiecki, Dora Matzke, Eric-Jan Wagenmakers |
E-Jahr: | 2018 |
Jahr: | 16 October 2018 |
Umfang: | 30 S. |
Fussnoten: | Gesehen am 02.04.2020 |
Titel Quelle: | Enthalten in: Journal of mathematical psychology |
Ort Quelle: | Orlando, Fla. : Academic Press, 1964 |
Jahr Quelle: | 2018 |
Band/Heft Quelle: | 87(2018), Seite 46-75 |
ISSN Quelle: | 0022-2496 |
Abstract: | For many years the Diffusion Decision Model (DDM) has successfully accounted for behavioral data from a wide range of domains. Important contributors to the DDM’s success are the across-trial variability parameters, which allow the model to account for the various shapes of response time distributions encountered in practice. However, several researchers have pointed out that estimating the variability parameters can be a challenging task. Moreover, the numerous fitting methods for the DDM each come with their own associated problems and solutions. This often leaves users in a difficult position. In this collaborative project we invited researchers from the DDM community to apply their various fitting methods to simulated data and provide advice and expert guidance on estimating the DDM’s across-trial variability parameters using these methods. Our study establishes a comprehensive reference resource and describes methods that can help to overcome the challenges associated with estimating the DDM’s across-trial variability parameters. |
DOI: | doi:10.1016/j.jmp.2018.09.004 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1016/j.jmp.2018.09.004 |
| Volltext: http://www.sciencedirect.com/science/article/pii/S002224961830021X |
| DOI: https://doi.org/10.1016/j.jmp.2018.09.004 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Across-trial variability parameters |
| Diffusion Decision Model |
| Parameter estimation |
K10plus-PPN: | 1693805960 |
Verknüpfungen: | → Zeitschrift |
Estimating across-trial variability parameters of the diffusion decision model / Boehm, Udo [VerfasserIn]; 16 October 2018 (Online-Ressource)