Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Boileau, Etienne [VerfasserIn]   i
 Dieterich, Christoph [VerfasserIn]   i
Titel:RNA modification level estimation with pulseR
Verf.angabe:Etienne Boileau andChristoph Dieterich
E-Jahr:2018
Jahr:10 December 2018
Umfang:8 S.
Fussnoten:Gesehen am 07.04.2020
Titel Quelle:Enthalten in: Genes
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2018
Band/Heft Quelle:9(2018,12) Artikel-Nummer 619, 8 Seiten
ISSN Quelle:2073-4425
Abstract:RNA modifications regulate the complex life of transcripts. An experimental approach called LAIC-seq was developed to characterize modification levels on a transcriptome-wide scale. In this method, the modified and unmodified molecules are separated using antibodies specific for a given RNA modification (e.g., m6A). In essence, the procedure of biochemical separation yields three fractions: Input, eluate, and supernatent, which are subjected to RNA-seq. In this work, we present a bioinformatics workflow, which starts from RNA-seq data to infer gene-specific modification levels by a statistical model on a transcriptome-wide scale. Our workflow centers around the pulseR package, which was originally developed for the analysis of metabolic labeling experiments. We demonstrate how to analyze data without external normalization (i.e., in the absence of spike-ins), given high efficiency of separation, and how, alternatively, scaling factors can be derived from unmodified spike-ins. Importantly, our workflow provides an estimate of uncertainty of modification levels in terms of confidence intervals for model parameters, such as gene expression and RNA modification levels. We also compare alternative model parametrizations, log-odds, or the proportion of the modified molecules and discuss the pros and cons of each representation. In summary, our workflow is a versatile approach to RNA modification level estimation, which is open to any read-count-based experimental approach.
DOI:doi:10.3390/genes9120619
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3390/genes9120619
 Volltext: https://www.mdpi.com/2073-4425/9/12/619
 DOI: https://doi.org/10.3390/genes9120619
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:computational biology
 confidence interval
 m<sup>6</sup>A
 MeRIP
 RNA-seq
 software
K10plus-PPN:1694169375
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68562436   QR-Code
zum Seitenanfang