Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Rodriguez, Pau [VerfasserIn]  |
| Bautista, Miguel [VerfasserIn]  |
| Gonzàlez, Jordi [VerfasserIn]  |
| Escalera, Sergio [VerfasserIn]  |
Titel: | Beyond one-hot encoding |
Titelzusatz: | lower dimensional target embedding |
Verf.angabe: | Pau Rodríguez, Miguel A. Bautista, Jordi Gonzàlez, Sergio Escalera |
E-Jahr: | 2018 |
Jahr: | 11 May 2018 |
Umfang: | 11 S. |
Fussnoten: | Gesehen am 21.04.2020 |
Titel Quelle: | Enthalten in: Image and vision computing |
Ort Quelle: | Amsterdam [u.a.] : Elsevier Science, 1983 |
Jahr Quelle: | 2018 |
Band/Heft Quelle: | 75(2018), Seite 21-31 |
Abstract: | Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates. |
DOI: | doi:10.1016/j.imavis.2018.04.004 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1016/j.imavis.2018.04.004 |
| Volltext: http://www.sciencedirect.com/science/article/pii/S0262885618300623 |
| DOI: https://doi.org/10.1016/j.imavis.2018.04.004 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Computer vision |
| Deep learning |
| Error correcting output codes |
| Output embeddings |
K10plus-PPN: | 1695324978 |
Verknüpfungen: | → Zeitschrift |
Beyond one-hot encoding / Rodriguez, Pau [VerfasserIn]; 11 May 2018 (Online-Ressource)
68568716