Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Yin, Yi [VerfasserIn]   i
 Sedlaczek, Oliver [VerfasserIn]   i
 Müller, Benedikt [VerfasserIn]   i
 Warth, Arne [VerfasserIn]   i
 González-Vallinas Garrachón, Margarita [VerfasserIn]   i
 Lahrmann, Bernd [VerfasserIn]   i
 Grabe, Niels [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Breuhahn, Kai [VerfasserIn]   i
 Vignon-Clementel, Irene E. [VerfasserIn]   i
 Drasdo, Dirk [VerfasserIn]   i
Titel:Tumor cell load and heterogeneity estimation from diffusion-weighted mri calibrated with histological data
Titelzusatz:an example from lung cancer
Verf.angabe:Yi Yin, Oliver Sedlaczek, Benedikt Müller, Arne Warth, Margarita González-Vallinas, Bernd Lahrmann, Niels Grabe, Hans-Ulrich Kauczor, Kai Breuhahn, Irene E. Vignon-Clementel, et al.
Jahr:2018
Umfang:12 S.
Fussnoten:Date of publication: 27 April 2017 ; Gesehen am 22.04.2020
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2018
Band/Heft Quelle:37(2018), 1, Seite 35-46
ISSN Quelle:1558-254X
Abstract:Diffusion-weighted magnetic resonance imaging (DWI) is a key non-invasive imaging technique for cancer diagnosis and tumor treatment assessment, reflecting Brownian movement of water molecules in tissues. Since densely packed cells restrict molecule mobility, tumor tissues produce usually higher signal (a.k.a. less attenuated signal) on isotropic maps compared with normal tissues. However, no general quantitative relation between DWI data and the cell density has been established. In order to link low-resolution clinical cross-sectional data with high-resolution histological information, we developed an image processing and analysis chain, which was used to study the correlation between the diffusion coefficient (D value) estimated from DWI and tumor cellularity from serial histological slides of a resected non-small cell lung cancer tumor. Color deconvolution followed by cell nuclei segmentation was performed on digitized histological images to determine local and cell-type specific 2d (two-dimensional) densities. From these, the 3d cell density was inferred by a model-based sampling technique, which is necessary for the calculation of local and global 3d tumor cell count. Next, DWI sequence information was overlaid with high-resolution CT data and the resected histology using prominent anatomical hallmarks for co-registration of histology tissue blocks and non-invasive imaging modalities' data. The integration of cell numbers information and DWI data derived from different tumor areas revealed a clear negative correlation between cell density and D value. Importantly, spatial tumor cell density can be calculated based on DWI data. In summary, our results demonstrate that tumor cell count and heterogeneity can be predicted from DWI data, which may open new opportunities for personalized diagnosis and therapy optimization.
DOI:doi:10.1109/TMI.2017.2698525
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TMI.2017.2698525
 Volltext: https://ieeexplore.ieee.org/document/7913723
 DOI: https://doi.org/10.1109/TMI.2017.2698525
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:3d cell density
 Algorithms
 biodiffusion
 biomedical MRI
 Brownian movement
 cancer
 cancer diagnosis
 Carcinoma, Non-Small-Cell Lung
 Cell Count
 cell density
 cell nuclei segmentation
 Cell Nucleus
 cell-type specific 2d densities
 cellular biophysics
 color deconvolution
 computerised tomography
 Correlation
 deconvolution
 densely packed cells
 diffusion coefficient
 Diffusion Magnetic Resonance Imaging
 diffusion-weighted MRI
 digitized histological images
 DWI
 DWI sequence information
 heterogeneity
 heterogeneity estimation
 high-resolution CT data
 high-resolution histological information
 Histocytochemistry
 histological data
 histology data
 histopathology
 Humans
 image analysis
 image co-registration
 image colour analysis
 Image Interpretation, Computer-Assisted
 image processing
 image segmentation
 image sequences
 isotropic maps
 local 3D tumor cell count
 low-resolution clinical cross-sectional data
 lung
 lung cancer
 Lung Neoplasms
 Lungs
 magnetic resonance imaging
 medical image processing
 model-based sampling technique
 molecule mobility
 noninvasive imaging modalities
 noninvasive imaging technique
 optimisation
 personalized diagnosis
 resected nonsmall cell lung cancer tumor
 serial histological slides
 therapy optimization
 Three-dimensional displays
 tissues
 tumor cell load
 tumor cellularity
 tumor tissues
 tumor treatment
 Tumors
 tumours
K10plus-PPN:1695644530
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68569338   QR-Code
zum Seitenanfang