Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Müller-Christmann, Christine [VerfasserIn]   i
 Blum, A. [VerfasserIn]   i
 Buhl, T. [VerfasserIn]   i
 Mitteldorf, C. [VerfasserIn]   i
 Hofmann‐Wellenhof, R. [VerfasserIn]   i
 Deinlein, T. [VerfasserIn]   i
 Stolz, W. [VerfasserIn]   i
 Trennheuser, Lukas [VerfasserIn]   i
 Cussigh, Christiane [VerfasserIn]   i
 Deltgen, David [VerfasserIn]   i
 Winkler, Julia K. [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Rosenberger, A. [VerfasserIn]   i
 Hänßle, Holger [VerfasserIn]   i
Titel:Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas
Verf.angabe:C. Fink, A. Blum, T. Buhl, C. Mitteldorf, R. Hofmann‐Wellenhof, T. Deinlein, W. Stolz, L. Trennheuser, C. Cussigh, D. Deltgen, J.K. Winkler, F. Toberer, A. Enk, A. Rosenberger, H.A. Haenssle
E-Jahr:2019
Jahr:19 December 2019
Fussnoten:Gesehen am 23.04.2020
Titel Quelle:Enthalten in: European Academy of Dermatology and VenereologyJournal of the European Academy of Dermatology and Venereology
Ort Quelle:Oxford [u.a.] : Wiley-Blackwell, 1991
Jahr Quelle:2020
Band/Heft Quelle:34(2020), 6, Seite 1355-1361
ISSN Quelle:1468-3083
Abstract:Background Deep learning convolutional neural networks (CNN) may assist physicians in the diagnosis of melanoma. The capacity of a CNN to differentiate melanomas from combined naevi, the latter representing well-known melanoma simulators, has not been investigated. Objective To assess the diagnostic performance of a CNN when used to differentiate melanomas from combined naevi in comparison with dermatologists. Methods In this study, a CNN with regulatory approval for the European market (Moleanalyzer-Pro, FotoFinder Systems GmbH, Bad Birnbach, Germany) was used. We attained a dichotomous classification (benign, malignant) in dermoscopic images of 36 combined naevi and 36 melanomas with a mean Breslow thickness of 1.3 mm. Primary outcome measures were the CNN's sensitivity, specificity and the diagnostic odds ratio (DOR) in comparison with 11 dermatologists with different levels of experience. Results The CNN revealed a sensitivity, specificity and DOR of 97.1% (95% CI [82.7-99.6]), 78.8% (95% CI [62.8-89.1.3]) and 34 (95% CI [4.8-239]), respectively. Dermatologists showed a lower mean sensitivity, specificity and DOR of 90.6% (95% CI [84.1-94.7]; P = 0.092), 71.0% (95% CI [62.6-78.1]; P = 0.256) and 24 (95% CI [11.6-48.4]; P = 0.1114). Under the assumption that dermatologists use the CNN to verify their (initial) melanoma diagnosis, dermatologists achieve an increased specificity of 90.3% (95% CI [79.8-95.6]) at an almost unchanged sensitivity. The largest benefit was observed in ‘beginners’, who performed worst without CNN verification (DOR = 12) but best with CNN verification (DOR = 98). Conclusion The tested CNN more accurately classified combined naevi and melanomas in comparison with trained dermatologists. Their diagnostic performance could be improved if the CNN was used to confirm/overrule an initial melanoma diagnosis. Application of a CNN may therefore be of benefit to clinicians.
DOI:doi:10.1111/jdv.16165
URL:kostenfrei: Volltext ; Verlag: https://doi.org/10.1111/jdv.16165
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/jdv.16165
 DOI: https://doi.org/10.1111/jdv.16165
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1695832965
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68569806   QR-Code
zum Seitenanfang