Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Donkov, Sava [VerfasserIn]   i
 Veltchev, Todor V. [VerfasserIn]   i
 Girichidis, Ph [VerfasserIn]   i
 Klessen, Ralf S. [VerfasserIn]   i
Titel:Statistical mass function of prestellar cores from the density distribution of their natal clouds
Verf.angabe:S. Donkov, T.V. Veltchev, Ph. Girichidis, and R.S. Klessen
E-Jahr:2020
Jahr:17 March 2020
Umfang:12 S.
Fussnoten:Gesehen am 28.04.2020
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2020
Band/Heft Quelle:635(2020) Artikel-Nummer A88, 12 Seiten
ISSN Quelle:1432-0746
Abstract:The mass function of clumps observed in molecular clouds raises interesting theoretical issues, especially in its relation to the stellar initial mass function (IMF). We propose a statistical model of the mass function of prestellar cores (CMF), formed in self-gravitating isothermal clouds at a given stage of their evolution. The latter is characterized by the mass-density probability distribution function (ρ-PDF), which is a power-law with slope q. The different molecular clouds are divided into ensembles according to the PDF slope and each ensemble is represented by a single spherical cloud. The cores are considered as elements of self-similar structure typical for fractal clouds and are modeled by spherical objects populating each cloud shell. Our model assumes relations between size, mass, and density of the statistical cores. Out of these, a core mass-density relationship ρ ∝ mx is derived where x = 1/(1 + q). We find that q determines the existence or nonexistence of a threshold density for core collapse. The derived general CMF is a power law of slope - 1 while the CMF of gravitationally unstable cores has a slope (-1 + x∕2), comparable with the slopes of the high-mass part of the stellar IMF and of observational CMFs.
DOI:doi:10.1051/0004-6361/201936993
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1051/0004-6361/201936993
 Volltext: https://www.aanda.org/articles/aa/abs/2020/03/aa36993-19/aa36993-19.html
 DOI: https://doi.org/10.1051/0004-6361/201936993
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1696287928
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68571162   QR-Code
zum Seitenanfang